Irreversible Port-Hamiltonian Formulation of some Non-isothermal Electrochemical Processes
Authors
Hector Ramirez, Daniel Sbarbaro, Yann Le Gorrec
Abstract
Electrochemical processes have been developed for a wide range of applications such as, mineral refining, water purification, energy storage and generation. The development of models to describe these processes is very important for their analysis, optimization and operation. The framework of irreversible port-Hamiltonian systems has proven to be an important tool to analyze and integrate thermal models with models of different domains. This work discusses the modeling of non-isothermal electrochemical processes as irreversible port-Hamiltonian systems. An irreversible port-Hamiltonian model based on the internal energy function is derived for a simple but general example. The irreversible model is obtained from the molar and charge balance equations combined with the entropy balance equation. The resulting model can be interpreted as a thermodynamic system and aspects such as entropy production, thermodynamic driving forces and intensive/extensive variables are encoded in the representation. An electrochemical process with two simultaneous reactions is considered to illustrate the approach. The interconnection with a resistive load is also considered to illustrate the benefit of the port-based formulation of the model.
Keywords
Electrochemical reactions; port-Hamiltonian systems; irreversible thermodynamics; modeling
Citation
- Journal: IFAC-PapersOnLine
- Year: 2019
- Volume: 52
- Issue: 7
- Pages: 19–24
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2019.07.004
- Note: 3rd IFAC Workshop on Thermodynamic Foundations for a Mathematical Systems Theory TFMST 2019- Louvain-la-Neuve, Belgium, 3–5 July 2019
BibTeX
@article{Ramirez_2019,
title={{Irreversible Port-Hamiltonian Formulation of some Non-isothermal Electrochemical Processes}},
volume={52},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2019.07.004},
number={7},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Ramirez, Hector and Sbarbaro, Daniel and Gorrec, Yann Le},
year={2019},
pages={19--24}
}
References
- Bernardi, D., Pawlikowski, E. & Newman, J. A General Energy Balance for Battery Systems. Journal of The Electrochemical Society vol. 132 5–12 (1985) – 10.1149/1.2113792
- Duindam, (2009)
- Gu, W. B. & Wang, C. Y. Thermal-Electrochemical Modeling of Battery Systems. Journal of The Electrochemical Society vol. 147 2910 (2000) – 10.1149/1.1393625
- Hjelmfelt, A., Schreiber, I. & Ross, J. Efficiency of power production in simple nonlinear electrochemical systems. The Journal of Physical Chemistry vol. 95 6048–6053 (1991) – 10.1021/j100168a062
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Karnopp, D. Bond graph models for electrochemical energy storage : electrical, chemical and thermal effects. Journal of the Franklin Institute vol. 327 983–992 (1990) – 10.1016/0016-0032(90)90073-r
- Kondepudi, (1998)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Oster, G. F., Perelson, A. S. & Katchalsky, A. Network thermodynamics: dynamic modelling of biophysical systems. Quarterly Reviews of Biophysics vol. 6 1–134 (1973) – 10.1017/s0033583500000081
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Rao, L. & Newman, J. Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems. Journal of The Electrochemical Society vol. 144 2697–2704 (1997) – 10.1149/1.1837884
- Sbarbaro, D. On the Port-Hamiltonian Models of some Electrochemical Processes. IFAC-PapersOnLine vol. 51 38–43 (2018) – 10.1016/j.ifacol.2018.06.010
- Shiner, (1996)
- Tofighi, A. & Kalantar, M. Passivity-based control of PEM fuel cell/battery hybrid power source. 2011 IEEE Energy Conversion Congress and Exposition 902–908 (2011) doi:10.1109/ecce.2011.6063867 – 10.1109/ecce.2011.6063867
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A., Rao, S. & Jayawardhana, B. On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics. SIAM Journal on Applied Mathematics vol. 73 953–973 (2013) – 10.1137/11085431x
- van der Schaft, (2011)
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493