Energy shaping plus Damping injection of Irreversible Port Hamiltonian Systems
Authors
Ignacio Villalobos, Hector Ramírez, Yann Le Gorrec
Abstract
Irreversible port-Hamiltonian systems (IPHS) are an extension of port-Hamiltonian systems (PHS) for irreversible thermodynamics which encompass a large class of thermodynamic systems that may contain reversible and irreversible phenomena. Energy shaping and damping injection are standard structure preserving passivity based control approaches which have proven to be very successful for the stabilization of PHS. However, in the case of irreversible thermodynamics, the non-linear nature of the systems make it non-trivial to apply these approaches for stabilization. In this paper we propose a systematic procedure to perform, in a first control loop, energy shaping by state modulated interconnection with a controller in IPHS form. Then, a second control loop guarantees asymptotic stability by the feedback of a new closed-loop passive output. The approach allows to stabilize IPHS while preserving the IPHS structure in closed-loop, allowing to interpret the closed-loop system as a desired thermodynamic system. The example of the continuous stirred tank reactor is used to illustrate the approach.
Keywords
Port-Hamiltonian systems; Irreversible thermodynamics; Passivity based control; Control by interconnection; Damping injection
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 11539–11544
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.630
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Villalobos_2020,
title={{Energy shaping plus Damping injection of Irreversible Port Hamiltonian Systems}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.630},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Villalobos, Ignacio and Ramírez, Hector and Gorrec, Yann Le},
year={2020},
pages={11539--11544}
}
References
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Aris, Elementary chemical reactor analysis. Butterworths Series in Chemical Engineering. (1989)
- Callen, (1985)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Eberard, D., Maschke, B. & van der Schaft, A. J. CONSERVATIVE SYSTEMS WITH PORTS ON CONTACT MANIFOLDS. IFAC Proceedings Volumes vol. 38 342–347 (2005) – 10.3182/20050703-6-cz-1902.00711
- Favache, A. & Dochain, D. Thermodynamics and chemical systems stability: The CSTR case study revisited. Journal of Process Control vol. 19 371–379 (2009) – 10.1016/j.jprocont.2008.07.007
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control vol. 22 412–422 (2012) – 10.1016/j.jprocont.2011.12.007
- Jillson, K. R. & Erik Ydstie, B. Process networks with decentralized inventory and flow control. Journal of Process Control vol. 17 399–413 (2007) – 10.1016/j.jprocont.2006.12.006
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Prigogine, Treatise on thermodynamics. (1954)
- Ramirez, H., Gorrec, Y. L. & Calchand, N. Irreversible port-Hamiltonian formulation of non-isothermal electromechanical systems with hysteresis. IFAC-PapersOnLine vol. 51 19–24 (2018) – 10.1016/j.ifacol.2018.06.005
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Van Der Schalt, (2004)
- van der Schalt, (2016)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Ydstie, B. E. Passivity based control via the second law. Computers & Chemical Engineering vol. 26 1037–1048 (2002) – 10.1016/s0098-1354(02)00041-8