Available energy-based interconnection and entropy assignment (ABI-EA) boundary control of the heat equation: an Irreversible Port Hamiltonian approach
Authors
Luis A. Mora, Yann Le Gorrec, Hector Ramirez
Abstract
In this paper, we consider the boundary control of the 1D heat equation using an irreversible port Hamiltonian systems (IPHS) formulation. This formulation allows to cope with the second principle of Thermodynamics and exhibits the physical properties of the system. We extend the Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC) method developed for port Hamiltonian systems to the available energy-based boundary control of IPHS. This method allows to achieve the desired equilibrium profile without constraints on the boundary conditions or on the initial profile of the plant. The method is illustrated by means of simulations considering the boundary control of the 1D heat diffusion in a copper rod.
Citation
- Journal: 2022 American Control Conference (ACC)
- Year: 2022
- Volume:
- Issue:
- Pages: 2397–2402
- Publisher: IEEE
- DOI: 10.23919/acc53348.2022.9867213
BibTeX
@inproceedings{Mora_2022,
title={{Available energy-based interconnection and entropy assignment (ABI-EA) boundary control of the heat equation: an Irreversible Port Hamiltonian approach}},
DOI={10.23919/acc53348.2022.9867213},
booktitle={{2022 American Control Conference (ACC)}},
publisher={IEEE},
author={Mora, Luis A. and Le Gorrec, Yann and Ramirez, Hector},
year={2022},
pages={2397--2402}
}
References
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science 89, 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H. & Gorrec, Y. L. An irreversible port-Hamiltonian formulation of distributed diffusion processes. IFAC-PapersOnLine 49, 46–51 (2016) – 10.1016/j.ifacol.2016.10.752
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica 64, 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ramirez, H. & Le Gorrec, Y. Control of non-isothermal chemical reaction networks using irreversible port-Hamiltonian systems. IFAC-PapersOnLine 50, 576–581 (2017) – 10.1016/j.ifacol.2017.08.079
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science 248, 117107 (2022) – 10.1016/j.ces.2021.117107
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control 75, 645–665 (2002) – 10.1080/00207170210135939
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control 19, 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- gale, Smithells Metals Reference Book (2004)
- MÜNCH, A. & PEDREGAL, P. Numerical null controllability of the heat equation through a least squares and variational approach. Eur. J. Appl. Math 25, 277–306 (2014) – 10.1017/s0956792514000023
- LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems. (2002) doi:10.1017/cbo9780511791253 – 10.1017/cbo9780511791253
- Smyshlyaev, A. & Krstic, M. Adaptive boundary control for unstable parabolic PDEs—Part II: Estimation-based designs. Automatica 43, 1543–1556 (2007) – 10.1016/j.automatica.2007.02.014
- Izadi, M. & Dubljevic, S. Backstepping output-feedback control of moving boundary parabolic PDEs. European Journal of Control 21, 27–35 (2015) – 10.1016/j.ejcon.2014.11.002
- Micu, S. & Zuazua, E. Regularity issues for the null-controllability of the linear 1-d heat equation. Systems & Control Letters 60, 406–413 (2011) – 10.1016/j.sysconle.2011.03.005
- Hu, Q.-Q., Jin, F.-F. & Yan, B.-Q. Boundary Stabilization of Heat Equation with Multi-Point Heat Source. Mathematics 9, 834 (2021) – 10.3390/math9080834
- Martin, P., Rosier, L. & Rouchon, P. Null controllability of the heat equation using flatness. Automatica 50, 3067–3076 (2014) – 10.1016/j.automatica.2014.10.049
- krstic, Lyapunov adaptive stabilization of parabolic PDEs - Part I: A benchmark for boundary control. Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference CDC-ECC ’05 (2005)
- Lohéac, J., Trélat, E. & Zuazua, E. Nonnegative control of finite-dimensional linear systems. Ann. Inst. H. Poincaré C Anal. Non Linéaire 38, 301–346 (2021) – 10.1016/j.anihpc.2020.07.004
- Krstic, M. & Smyshlyaev, A. Boundary Control of PDEs. (2008) doi:10.1137/1.9780898718607 – 10.1137/1.9780898718607
- Trang VU, N. M., LEFÈVRE, L. & NOUAILLETAS, R. Distributed and backstepping boundary controls to achieve IDA-PBC design. IFAC-PapersOnLine 48, 482–487 (2015) – 10.1016/j.ifacol.2015.05.034
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine 52, 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine 52, 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control 21, 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica 37, 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Ydstie, B. E. Passivity based control via the second law. Computers & Chemical Engineering 26, 1037–1048 (2002) – 10.1016/s0098-1354(02)00041-8
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control 22, 412–422 (2012) – 10.1016/j.jprocont.2011.12.007