A port-Hamiltonian framework for the modeling and FEM discretization of hyperelastic systems
Authors
Cristobal Ponce, Yongxin Wu, Yann Le Gorrec, Hector Ramirez
Abstract
This article presents a systematic modeling methodology for deriving the infinite-dimensional port-Hamiltonian representation of geometrically nonlinear and hyperelastic systems, and a structure-preserving mixed FEM approach. The proposed methods provide a rigorous framework for obtaining the dynamic nonlinear partial differential equations governing these systems, ensuring that they are consistent with a Stokes–Dirac geometric structure. This structure is fundamental for modular multiphysics modeling and nonlinear passivity-based control. The modeling methodology is rooted in a total Lagrangian formulation, incorporating Green–Lagrange strains and second Piola–Kirchhoff stresses, where generalized displacements and strains define the interconnection structure. Using the generalized Hamilton’s principle, infinite-dimensional port-Hamiltonian systems are systematically derived. To preserve the structure upon spatial discretization, a three-field mixed finite element approach is proposed, in which displacements, strains, and stresses are explicitly treated as independent variables to retain the port-Hamiltonian structure. The effectiveness of the framework is demonstrated through model derivation and simulations, using a geometrically nonlinear planar beam with Saint Venant–Kirchhoff material, and a compressible nonlinear 2D elasticity problem with a Neo-Hookean material model, as illustrative examples.
Keywords
Port-Hamiltonian systems; Modeling; Structure-preserving discretization; Nonlinear elastodynamics; Hyperelasticity
Citation
- Journal: Applied Mathematical Modelling
- Year: 2026
- Volume: 150
- Issue:
- Pages: 116403
- Publisher: Elsevier BV
- DOI: 10.1016/j.apm.2025.116403
BibTeX
@article{Ponce_2026,
title={{A port-Hamiltonian framework for the modeling and FEM discretization of hyperelastic systems}},
volume={150},
ISSN={0307-904X},
DOI={10.1016/j.apm.2025.116403},
journal={Applied Mathematical Modelling},
publisher={Elsevier BV},
author={Ponce, Cristobal and Wu, Yongxin and Le Gorrec, Yann and Ramirez, Hector},
year={2026},
pages={116403}
}
References
- Bhatti, M. M., Marin, M., Ellahi, R. & Fudulu, I. M. Insight into the dynamics of EMHD hybrid nanofluid (ZnO/CuO-SA) flow through a pipe for geothermal energy applications. J Therm Anal Calorim 148, 14261–14273 (2023) – 10.1007/s10973-023-12565-8
- Shi, Z., Li, L. & He, T. Thermoelastic transient memory response analysis of non-localized nano-piezoelectric plates based on Moore-Gibson-Thompson thermoelasticity theory. The Journal of Strain Analysis for Engineering Design 59, 194–206 (2024) – 10.1177/03093247241231063
- Rende, B. & Santos, I. F. Theoretical Contribution to multiphysical modeling of flywheel energy storage systems with a focus on thermal effects in magnetic bearings. Journal of Energy Storage 130, 117276 (2025) – 10.1016/j.est.2025.117276
- Childs, J. A. & Rucker, C. Leveraging Geometry to Enable High-Strength Continuum Robots. Front. Robot. AI 8, (2021) – 10.3389/frobt.2021.629871
- Li, T. et al. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids 61, 611–628 (2013) – 10.1016/j.jmps.2012.09.006
- Liu, Nonlinear dynamics design for in-space assembly motion of manipulators on flexible base structures. Nonlinear Dyn. (2025)
- Rega, Nonlinear dynamics in mechanics: state of the art and expected future developments. J. Comput. Nonlinear Dyn. (2022)
- Bayo, E., Garcia De Jalon, J. & Serna, M. A. A modified lagrangian formulation for the dynamic analysis of constrained mechanical systems. Computer Methods in Applied Mechanics and Engineering 71, 183–195 (1988) – 10.1016/0045-7825(88)90085-0
- Yosibash, Z. & Kirby, R. M. Dynamic response of various von-Kármán non-linear plate models and their 3-D counterparts. International Journal of Solids and Structures 42, 2517–2531 (2005) – 10.1016/j.ijsolstr.2004.10.006
- Yu, Lagrangian dynamics and nonlinear control of a continuum manipulator. (2015)
- Belytschko, (2014)
- Hales, Solving nonlinear solid mechanics problems with the Jacobian-free Newton Krylov method. Comput. Model. Eng. Sci. (2012)
- Saeed, A review of nonlinear control strategies for shape and stress in structural engineering. (2024)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Maschke, Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties. (1993)
- Duindam, (2009)
- Rashad, R. & Stramigioli, S. The Port-Hamiltonian Structure of Continuum Mechanics. J Nonlinear Sci 35, (2025) – 10.1007/s00332-025-10130-1
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Energetic decomposition of distributed systems with moving material domains: The port-Hamiltonian model of fluid-structure interaction. Journal of Geometry and Physics 175, 104477 (2022) – 10.1016/j.geomphys.2022.104477
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica 85, 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Schmid, J. & Zwart, H. Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances. ESAIM: COCV 27, 53 (2021) – 10.1051/cocv/2021051
- Cardoso-Ribeiro, F. L., Haine, G., Le Gorrec, Y., Matignon, D. & Ramirez, H. Port-Hamiltonian formulations for the modeling, simulation and control of fluids. Computers & Fluids 283, 106407 (2024) – 10.1016/j.compfluid.2024.106407
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information 37, 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Brugnoli, A., Rashad, R., Califano, F., Stramigioli, S. & Matignon, D. Mixed finite elements for port-Hamiltonian models of von Kármán beams. IFAC-PapersOnLine 54, 186–191 (2021) – 10.1016/j.ifacol.2021.11.076
- Voss, Modeling for control of an inflatable space reflector, the nonlinear 1-D case. (2008)
- Voß, T. & Scherpen, J. M. A. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation. SIAM J. Control Optim. 52, 493–519 (2014) – 10.1137/090774598
- Trivedi, M. V., Banavar, R. N. & Kotyczka, P. Hamiltonian modelling and buckling analysis of a nonlinear flexible beam with actuation at the bottom. Mathematical and Computer Modelling of Dynamical Systems 22, 475–492 (2016) – 10.1080/13873954.2016.1201517
- Brugnoli, A port-Hamiltonian formulation for the full von-Kármán plate model. (2022)
- Thoma, T., Kotyczka, P. & Egger, H. On the velocity-stress formulation for geometrically nonlinear elastodynamics and its structure-preserving discretization. Mathematical and Computer Modelling of Dynamical Systems 30, 701–720 (2024) – 10.1080/13873954.2024.2397486
- Kinon, Energy-momentum-consistent simulation of planar geometrically exact beams in a port-Hamiltonian framework. Multibody Syst. Dyn. (2025)
- Kinon,
- Ponce, C., Wu, Y., Le Gorrec, Y. & Ramirez, H. Port-Hamiltonian modeling of a geometrically nonlinear hyperelastic beam. IFAC-PapersOnLine 58, 309–314 (2024) – 10.1016/j.ifacol.2024.08.299
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics 62, 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Brugnoli, A., Rashad, R. & Stramigioli, S. Dual field structure-preserving discretization of port-Hamiltonian systems using finite element exterior calculus. Journal of Computational Physics 471, 111601 (2022) – 10.1016/j.jcp.2022.111601
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Kotyczka, P. Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems. IFAC-PapersOnLine 49, 298–303 (2016) – 10.1016/j.ifacol.2016.07.457
- Serhani, A., Matignon, D. & Haine, G. Structure-Preserving Finite Volume Method for 2D Linear and Non-Linear Port-Hamiltonian Systems ⁎ ⁎This work is supported by the project ANR-16-CE92-0028, entitled Interconnected Infinite-Dimensional systems for Heterogeneous Media, INFIDHEM, financed by the French National Research Agency (ANR). Further information is available at https://websites.isae-supaero.fr/infidhem/the-project/. IFAC-PapersOnLine 51, 131–136 (2018) – 10.1016/j.ifacol.2018.06.037
- Thoma, T. & Kotyczka, P. Explicit Port-Hamiltonian FEM-Models for Linear Mechanical Systems with Non-Uniform Boundary Conditions. IFAC-PapersOnLine 55, 499–504 (2022) – 10.1016/j.ifacol.2022.09.144
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics 373, 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Bochev, (2006)
- Yu, Y.-Y. Generalized Hamilton’s Principle and Variational Equation of Motion in Nonlinear Elasticity Theory, with Application to Plate Theory. The Journal of the Acoustical Society of America 36, 111–120 (1964) – 10.1121/1.1918921
- Le Gorrec, A semigroup approach to port-Hamiltonian systems associated with linear skew symmetric operator. (2004)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Brugnoli, (2020)
- Macchelli, Port-Hamiltonian formulation of infinite dimensional systems I. modeling. (2004)
- Nishida, Formal distributed port-Hamiltonian representation of field equations. (2005)
- Nishida, Field port-Lagrangian representation of conservation laws for variational symmetries. (2006)
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica 50, 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Schöberl, Analysis and comparison of port-Hamiltonian formulations for field theories-demonstrated by means of the Mindlin plate. (2013)
- Ponce, C., Wu, Y., Le Gorrec, Y. & Ramirez, H. A systematic methodology for port-Hamiltonian modeling of multidimensional flexible linear mechanical systems. Applied Mathematical Modelling 134, 434–451 (2024) – 10.1016/j.apm.2024.05.040
- Ponce, (2024)
- Beda, T. Modeling hyperelastic behavior of rubber: A novel invariant‐based and a review of constitutive models. J Polym Sci B Polym Phys 45, 1713–1732 (2007) – 10.1002/polb.20928
- Chagnon, G., Rebouah, M. & Favier, D. Hyperelastic Energy Densities for Soft Biological Tissues: A Review. J Elast 120, 129–160 (2014) – 10.1007/s10659-014-9508-z
- Melly, S. K., Liu, L., Liu, Y. & Leng, J. A review on material models for isotropic hyperelasticity. Int Journal of Mech Sys Dyn 1, 71–88 (2021) – 10.1002/msd2.12013
- Khaniki, H. B., Ghayesh, M. H., Chin, R. & Amabili, M. A review on the nonlinear dynamics of hyperelastic structures. Nonlinear Dyn 110, 963–994 (2022) – 10.1007/s11071-022-07700-3
- Reddy, (2014)
- Oden, (2006)
- Ogden, (1997)
- Wriggers, Mixed finite element methods-theory and discretization. (2009)
- Simo, J. C. & Rifai, M. S. A class of mixed assumed strain methods and the method of incompatible modes. Numerical Meth Engineering 29, 1595–1638 (1990) – 10.1002/nme.1620290802
- Simo, J. C. & Armero, F. Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes. Numerical Meth Engineering 33, 1413–1449 (1992) – 10.1002/nme.1620330705
- Reddy, (2006)
- Hairer, E., Lubich, C. & Wanner, G. Geometric numerical integration illustrated by the Störmer–Verlet method. Acta Numerica 12, 399–450 (2003) – 10.1017/s0962492902000144
- Brugnoli, Exact energy-conserving and linear discretization scheme for geometrically non-linear models. (2024)
- Brugnoli,
- Kinon,
- Kinon, P. L., Thoma, T., Betsch, P. & Kotyczka, P. Generalized Maxwell viscoelasticity for geometrically exact strings: Nonlinear port-Hamiltonian formulation and structure-preserving discretization. IFAC-PapersOnLine 58, 101–106 (2024) – 10.1016/j.ifacol.2024.08.264
- Hille, M., Franke, M., Zähringer, F. & Betsch, P. Structure-Preserving Discretization of a Polyconvexity-Inspired Formulation for Coupled Nonlinear Electro-Thermo-Elastodynamics. IFAC-PapersOnLine 58, 113–118 (2024) – 10.1016/j.ifacol.2024.08.266
- Pedersen, P. Analytical stiffness matrices for tetrahedral elements. Computer Methods in Applied Mechanics and Engineering 196, 261–278 (2006) – 10.1016/j.cma.2006.04.001
- Gülümser, Fast stiffness matrix calculation for nonlinear finite element method. J. Appl. Math. (2014)