Mixed finite elements for port-Hamiltonian models of von Kármán beams
Authors
Andrea Brugnoli, Ramy Rashad, Federico Califano, Stefano Stramigioli, Denis Matignon
Abstract
A port-Hamiltonian formulation of von Kármán beams is presented. The variables selection lead to a non linear interconnection operator, while the constitutive laws are linear. The model can be readily discretized by exploiting a coenergy formulation and a mixed finite element method. The mixed formulation does not demand the H 2 regularity requirement typical of standard Galerkin discretization of thin structures. A numerical test is performed to assess the convergence rate of the solution.
Keywords
Port-Hamiltonian systems; von Kármán beams; Mixed Finite Elements
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 186–191
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.076
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{Brugnoli_2021,
title={{Mixed finite elements for port-Hamiltonian models of von Kármán beams}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.076},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Brugnoli, Andrea and Rashad, Ramy and Califano, Federico and Stramigioli, Stefano and Matignon, Denis},
year={2021},
pages={186--191}
}
References
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Bilbao, S., Thomas, O., Touzé, C. & Ducceschi, M. Conservative numerical methods for the Full von Kármán plate equations. Numerical Methods for Partial Differential Equations vol. 31 1948–1970 (2015) – 10.1002/num.21974
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids vol. 33 (2021) – 10.1063/5.0048359
- Cardoso-Ribeiro, F. L., Brugnoli, A., Matignon, D. & Lefevre, L. Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. 2019 IEEE 58th Conference on Decision and Control (CDC) 6881–6886 (2019) doi:10.1109/cdc40024.2019.9030007 – 10.1109/cdc40024.2019.9030007
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Port-Hamiltonian model of two-dimensional shallow water equations in moving containers. IMA Journal of Mathematical Control and Information vol. 37 1348–1366 (2020) – 10.1093/imamci/dnaa016
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Ciarlet, P. G. A justification of the von Kármán equations. Archive for Rational Mechanics and Analysis vol. 73 349–389 (1980) – 10.1007/bf00247674
- Ciarlet, (1990)
- Gustafsson, T., Stenberg, R. & Videman, J. A Posteriori Estimates for Conforming Kirchhoff Plate Elements. SIAM Journal on Scientific Computing vol. 40 A1386–A1407 (2018) – 10.1137/17m1137334
- Kirby, R. C. & Kieu, T. T. Symplectic-mixed finite element approximation of linear acoustic wave equations. Numerische Mathematik vol. 130 257–291 (2014) – 10.1007/s00211-014-0667-4
- Lagnese, J. E. & Leugering, G. Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. Journal of Differential Equations vol. 91 355–388 (1991) – 10.1016/0022-0396(91)90145-y
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling of a Flexible Link. IEEE Transactions on Robotics vol. 23 650–660 (2007) – 10.1109/tro.2007.898990
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling and Simulation of Mechanical Systems With Rigid and Flexible Links. IEEE Transactions on Robotics vol. 25 1016–1029 (2009) – 10.1109/tro.2009.2026504
- Puel, J. P. & Tucsnak, M. Global existence for the full von K�rm�n system. Applied Mathematics & Optimization vol. 34 139–160 (1996) – 10.1007/bf01182621
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. Journal of Geometry and Physics vol. 164 104201 (2021) – 10.1016/j.geomphys.2021.104201
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow. Journal of Geometry and Physics vol. 164 104199 (2021) – 10.1016/j.geomphys.2021.104199
- Rathgeber, F. et al. Firedrake. ACM Transactions on Mathematical Software vol. 43 1–27 (2016) – 10.1145/2998441
- Reddy, (2010)
- Simo, J. C., Marsden, J. E. & Krishnaprasad, P. S. The Hamiltonian structure of nonlinear elasticity: The material and convective representations of solids, rods, and plates. Archive for Rational Mechanics and Analysis vol. 104 125–183 (1988) – 10.1007/bf00251673