Port-Hamiltonian modeling of a geometrically nonlinear hyperelastic beam
Authors
Cristobal Ponce, Yongxin Wu, Yann Le Gorrec, Hector Ramirez
Abstract
This paper is concerned with the port-Hamiltonian modeling of a Timoshenko beam subject geometric nonlinearities through von Kármán strains, material nonlinearity considering hyperelasticity with the assumption of neo-Hookean or Mooney-Rivlin material, in addition to the incompressible deformation constraint that corresponds to the preservation of volume. The model is suitable for representing the behavior of rubber like beams within the range of moderate deformations and rotations. Numerical simulations are carried out to illustrate the accuracy of the proposed model.
Keywords
Port-Hamiltonian systems; Modeling; Timoshenko beam; Nonlinear systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 309–314
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.299
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Ponce_2024,
title={{Port-Hamiltonian modeling of a geometrically nonlinear hyperelastic beam}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.299},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Ponce, Cristobal and Wu, Yongxin and Le Gorrec, Yann and Ramirez, Hector},
year={2024},
pages={309--314}
}
References
- Azarniya, O., Rahimi, G. & Forooghi, A. Large deformation analysis of a hyperplastic beam using experimental / FEM/ meshless collocation method. Waves in Random and Complex Media 1–20 (2023) doi:10.1080/17455030.2023.2184645 – 10.1080/17455030.2023.2184645
- Brugnoli, A., Rashad, R., Califano, F., Stramigioli, S. & Matignon, D. Mixed finite elements for port-Hamiltonian models of von Kármán beams. IFAC-PapersOnLine vol. 54 186–191 (2021) – 10.1016/j.ifacol.2021.11.076
- Duindam, (2009)
- Gurtin, (1973)
- Kinon, (2023)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Ponce, C., Wu, Y., Le Gorrec, Y. & Ramirez, H. A systematic methodology for port-Hamiltonian modeling of multidimensional flexible linear mechanical systems. Applied Mathematical Modelling vol. 134 434–451 (2024) – 10.1016/j.apm.2024.05.040
- Reddy, (2013)
- Reddy, (2017)
- Thoma, T. & Kotyczka, P. Explicit Port-Hamiltonian FEM-Models for Linear Mechanical Systems with Non-Uniform Boundary Conditions. IFAC-PapersOnLine vol. 55 499–504 (2022) – 10.1016/j.ifacol.2022.09.144
- V. Trivedi, M., N. Banavar, R. & Kotyczka, P. Port-Hamiltonian Modelling for Buckling Control of a Vertical Flexible Beam with Actuation at the Bottom. IFAC-PapersOnLine vol. 48 31–38 (2015) – 10.1016/j.ifacol.2015.10.210
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Voß, T. & Scherpen, J. M. A. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation. SIAM Journal on Control and Optimization vol. 52 493–519 (2014) – 10.1137/090774598
- Voss, (2008)