Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances
Authors
Abstract
In this paper, we are concerned with the stabilization of linear port-Hamiltonian systems of arbitrary order
Citation
- Journal: ESAIM: Control, Optimisation and Calculus of Variations
- Year: 2021
- Volume: 27
- Issue:
- Pages: 53
- Publisher: EDP Sciences
- DOI: 10.1051/cocv/2021051
BibTeX
@article{Schmid_2021,
title={{Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances}},
volume={27},
ISSN={1262-3377},
DOI={10.1051/cocv/2021051},
journal={ESAIM: Control, Optimisation and Calculus of Variations},
publisher={EDP Sciences},
author={Schmid, Jochen and Zwart, Hans},
year={2021},
pages={53}
}
References
- Augner, B. Well-Posedness and Stability of Infinite-Dimensional Linear Port-Hamiltonian Systems with Nonlinear Boundary Feedback. SIAM Journal on Control and Optimization vol. 57 1818–1844 (2019) – 10.1137/15m1024901
- Bastin, G. & Coron, J.-M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Progress in Nonlinear Differential Equations and Their Applications (Springer International Publishing, 2016). doi:10.1007/978-3-319-32062-5 – 10.1007/978-3-319-32062-5
- Clarke, F. H., Ledyaev, Yu. S. & Stern, R. J. Asymptotic Stability and Smooth Lyapunov Functions. Journal of Differential Equations vol. 149 69–114 (1998) – 10.1006/jdeq.1998.3476
- Curtain, R. & Zwart, H. Introduction to Infinite-Dimensional Systems Theory. Texts in Applied Mathematics (Springer New York, 2020). doi:10.1007/978-1-0716-0590-5 – 10.1007/978-1-0716-0590-5
- Dashkovskiy, S. & Mironchenko, A. Input-to-state stability of infinite-dimensional control systems. Mathematics of Control, Signals, and Systems vol. 25 1–35 (2012) – 10.1007/s00498-012-0090-2
- Dashkovskiy, Conference proceedings of the 11th IFAC Symposium on Nonlinear Control Systems, IFAC-PapersOnLine (2019)
- Dashkovskiy, S., Kapustyan, O. & Schmid, J. A local input-to-state stability result w.r.t. attractors of nonlinear reaction–diffusion equations. Mathematics of Control, Signals, and Systems vol. 32 309–326 (2020) – 10.1007/s00498-020-00256-w
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Edalatzadeh, M. S. & Morris, K. A. Stability and Well-Posedness of a Nonlinear Railway Track Model. IEEE Control Systems Letters vol. 3 162–167 (2019) – 10.1109/lcsys.2018.2849831
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control vol. 6 349–385 (1968) – 10.1137/0306025
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Jacob, B., Morris, K. & Zwart, H. C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. Journal of Evolution Equations vol. 15 493–502 (2015) – 10.1007/s00028-014-0271-1
- Jacob, B. & Kaiser, J. T. Well-posedness of systems of 1-D hyperbolic partial differential equations. Journal of Evolution Equations vol. 19 91–109 (2018) – 10.1007/s00028-018-0470-2
- Jacob, B., Nabiullin, R., Partington, J. R. & Schwenninger, F. L. Infinite-Dimensional Input-to-State Stability and Orlicz Spaces. SIAM Journal on Control and Optimization vol. 56 868–889 (2018) – 10.1137/16m1099467
- Jacob, B., Schwenninger, F. L. & Zwart, H. On continuity of solutions for parabolic control systems and input-to-state stability. Journal of Differential Equations vol. 266 6284–6306 (2019) – 10.1016/j.jde.2018.11.004
- Jacob, B., Mironchenko, A., Partington, J. R. & Wirth, F. Noncoercive Lyapunov Functions for Input-to-State Stability of Infinite-Dimensional Systems. SIAM Journal on Control and Optimization vol. 58 2952–2978 (2020) – 10.1137/19m1297506
- Jacob, B., Schwenninger, F. L. & Vorberg, L. A. Remarks on input-to-state stability of collocated systems with saturated feedback. Mathematics of Control, Signals, and Systems vol. 32 293–307 (2020) – 10.1007/s00498-020-00264-w
- Jayawardhana, B. & Weiss, G. State Convergence of Passive Nonlinear Systems With an $L^{2}$ Input. IEEE Transactions on Automatic Control vol. 54 1723–1727 (2009) – 10.1109/tac.2009.2020661
- Kankanamalage, H. G., Lin, Y. & Wang, Y. On Lyapunov-Krasovskii Characterizations of Input-to-Output Stability. IFAC-PapersOnLine vol. 50 14362–14367 (2017) – 10.1016/j.ifacol.2017.08.2015
- Karafyllis, I. & Krstic, M. ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs. IEEE Transactions on Automatic Control vol. 61 3712–3724 (2016) – 10.1109/tac.2016.2519762
- Karafyllis, I. & Krstic, M. ISS In Different Norms For 1-D Parabolic Pdes With Boundary Disturbances. SIAM Journal on Control and Optimization vol. 55 1716–1751 (2017) – 10.1137/16m1073753
- Karafyllis, I. & Krstic, M. Input-to-State Stability for PDEs. Communications and Control Engineering (Springer International Publishing, 2019). doi:10.1007/978-3-319-91011-6 – 10.1007/978-3-319-91011-6
- Kawan, C., Mironchenko, A., Swikir, A., Noroozi, N. & Zamani, M. A Lyapunov-Based Small-Gain Theorem for Infinite Networks. IEEE Transactions on Automatic Control vol. 66 5830–5844 (2021) – 10.1109/tac.2020.3042410
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Mazenc, F. & Prieur, C. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control & Related Fields vol. 1 231–250 (2011) – 10.3934/mcrf.2011.1.231
- Miletic, M., Sturzer, D., Arnold, A. & Kugi, A. Stability of an Euler-Bernoulli Beam With a Nonlinear Dynamic Feedback System. IEEE Transactions on Automatic Control vol. 61 2782–2795 (2016) – 10.1109/tac.2015.2499604
- Mironchenko, A. Local input-to-state stability: Characterizations and counterexamples. Systems & Control Letters vol. 87 23–28 (2016) – 10.1016/j.sysconle.2015.10.014
- Mironchenko, A. & Wirth, F. Characterizations of Input-to-State Stability for Infinite-Dimensional Systems. IEEE Transactions on Automatic Control vol. 63 1692–1707 (2018) – 10.1109/tac.2017.2756341
- Mironchenko, A. & Wirth, F. Lyapunov characterization of input-to-state stability for semilinear control systems over Banach spaces. Systems & Control Letters vol. 119 64–70 (2018) – 10.1016/j.sysconle.2018.07.007
- Mironchenko, A., Karafyllis, I. & Krstic, M. Monotonicity Methods for Input-to-State Stability of Nonlinear Parabolic PDEs with Boundary Disturbances. SIAM Journal on Control and Optimization vol. 57 510–532 (2019) – 10.1137/17m1161877
- Mironchenko, A. Criteria for Input-to-State Practical Stability. IEEE Transactions on Automatic Control vol. 64 298–304 (2019) – 10.1109/tac.2018.2824983
- Mironchenko, A. Small gain theorems for networks of heterogeneous systems. IFAC-PapersOnLine vol. 52 538–543 (2019) – 10.1016/j.ifacol.2019.12.017
- Mironchenko, A., Kawan, C. & Glück, J. Nonlinear small-gain theorems for input-to-state stability of infinite interconnections. Mathematics of Control, Signals, and Systems vol. 33 573–615 (2021) – 10.1007/s00498-021-00303-0
- Mironchenko, A. & Prieur, C. Input-to-State Stability of Infinite-Dimensional Systems: Recent Results and Open Questions. SIAM Review vol. 62 529–614 (2020) – 10.1137/19m1291248
- Nabiullin, R. & Schwenninger, F. L. Strong input-to-state stability for infinite-dimensional linear systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0210-8
- Oostveen, J. Strongly Stabilizable Distributed Parameter Systems. (2000) doi:10.1137/1.9780898719864 – 10.1137/1.9780898719864
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences (Springer New York, 1983). doi:10.1007/978-1-4612-5561-1 – 10.1007/978-1-4612-5561-1
- Pepe, P. On Liapunov–Krasovskii functionals under Carathéodory conditions. Automatica vol. 43 701–706 (2007) – 10.1016/j.automatica.2006.10.024
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Schmid, J. Weak input-to-state stability: characterizations and counterexamples. Mathematics of Control, Signals, and Systems vol. 31 433–454 (2019) – 10.1007/s00498-019-00248-5
- Schmid, Conference proceedings of the 11th Symposium on Nonlinear Control Systems, IFAC-PapersOnLine (2019)
- Schmid, J., Dashkovskiy, S., Jacob, B. & Laasri, H. Well-posedness of non-autonomous semilinear systems. IFAC-PapersOnLine vol. 52 216–220 (2019) – 10.1016/j.ifacol.2019.11.781
- Schmid, J. Infinite-time admissibility under compact perturbations. Operator Theory: Advances and Applications 73–82 (2020) doi:10.1007/978-3-030-35898-3_3 – 10.1007/978-3-030-35898-3_3
- Schwenninger, F. L. Input-to-state stability for parabolic boundary control:linear and semilinear systems. Operator Theory: Advances and Applications 83–116 (2020) doi:10.1007/978-3-030-35898-3_4 – 10.1007/978-3-030-35898-3_4
- Tucsnak, M. & Weiss, G. Well-posed systems—The LTI case and beyond. Automatica vol. 50 1757–1779 (2014) – 10.1016/j.automatica.2014.04.016
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Weiss, G. Admissibility of Unbounded Control Operators. SIAM Journal on Control and Optimization vol. 27 527–545 (1989) – 10.1137/0327028
- Zheng, J. & Zhu, G. Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations. Automatica vol. 97 271–277 (2018) – 10.1016/j.automatica.2018.08.007
- Zheng, J. & Zhu, G. A De Giorgi Iteration-Based Approach for the Establishment of ISS Properties for Burgers’ Equation With Boundary and In-domain Disturbances. IEEE Transactions on Automatic Control vol. 64 3476–3483 (2019) – 10.1109/tac.2018.2880160
- Zheng, J. & Zhu, G. A weak maximum principle-based approach for input-to-state stability analysis of nonlinear parabolic PDEs with boundary disturbances. Mathematics of Control, Signals, and Systems vol. 32 157–176 (2020) – 10.1007/s00498-020-00258-8