Singular Perturbations for Implicit port-Hamiltonian systems
Authors
Mario Spirito, Bernhard Maschke, Yann Le Gorrec
Abstract
In this work, we present the standard Singular Perturbations technique applied to Implicit port-Hamiltonian systems. The investigation produces a structure-preserving reduced-order model if certain additional passivity conditions are satisfied. Moreover, such an investigation provides a different insight into the standard Singular Perturbations approach relating the negligible time constant parameters \( \varepsilon \) to energy parameters. We analyze the deviation between the complete system model and the reduced one via a Lyapunov-based approach. We then conclude the paper by applying the proposed reduced order model to a DC-motor example to show the effectiveness of the development.
Citation
- Journal: 2024 European Control Conference (ECC)
- Year: 2024
- Volume:
- Issue:
- Pages: 2071–2076
- Publisher: IEEE
- DOI: 10.23919/ecc64448.2024.10590942
BibTeX
@inproceedings{Spirito_2024,
title={{Singular Perturbations for Implicit port-Hamiltonian systems}},
DOI={10.23919/ecc64448.2024.10590942},
booktitle={{2024 European Control Conference (ECC)}},
publisher={IEEE},
author={Spirito, Mario and Maschke, Bernhard and Le Gorrec, Yann},
year={2024},
pages={2071--2076}
}
References
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- Van Der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. AEU International journal of electronics and communications (1995)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Fortuna, L., Nunnari, G. & Gallo, A. Model Order Reduction Techniques with Applications in Electrical Engineering. (Springer London, 1992). doi:10.1007/978-1-4471-3198-4 – 10.1007/978-1-4471-3198-4
- Kokotovic, P. V., O’Malley, R. E., Jr. & Sannuti, P. Singular perturbations and order reduction in control theory — An overview. Automatica vol. 12 123–132 (1976) – 10.1016/0005-1098(76)90076-5
- Davison, E. A method for simplifying linear dynamic systems. IEEE Transactions on Automatic Control vol. 11 93–101 (1966) – 10.1109/tac.1966.1098264
- Spirito, Model order reduction beyond singular perturbation for linear systems (2023)
- Suman, S. K. & Kumar, A. Investigation and Implementation of Model Order Reduction Technique for Large Scale Dynamical Systems. Archives of Computational Methods in Engineering vol. 29 3087–3108 (2022) – 10.1007/s11831-021-09690-8
- Kumar, R. & Ezhilarasi, D. A state-of-the-art survey of model order reduction techniques for large-scale coupled dynamical systems. International Journal of Dynamics and Control vol. 11 900–916 (2022) – 10.1007/s40435-022-00985-7
- Antoulas, A. C., Sorensen, D. C. & Gugercin, S. A survey of model reduction methods for large-scale systems. Contemporary Mathematics 193–219 (2001) doi:10.1090/conm/280/04630 – 10.1090/conm/280/04630
- Gugercin, S. & Antoulas, A. C. A Survey of Model Reduction by Balanced Truncation and Some New Results. International Journal of Control vol. 77 748–766 (2004) – 10.1080/00207170410001713448
- Benner, P., Gugercin, S. & Willcox, K. A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems. SIAM Review vol. 57 483–531 (2015) – 10.1137/130932715
- Model Reduction and Approximation. (2017) doi:10.1137/1.9781611974829 – 10.1137/1.9781611974829
- Lopezlena, R., Scherpen, J. M. A. & Fujimoto, K. Energy-Storage Balanced Reduction of Port-Hamiltonian Systems. IFAC Proceedings Volumes vol. 36 69–74 (2003) – 10.1016/s1474-6670(17)38869-9
- FUJIMOTO, K. Balanced Realization and Model Order Reduction for Port-Hamiltonian Systems. Journal of System Design and Dynamics vol. 2 694–702 (2008) – 10.1299/jsdd.2.694
- Kawano, Y. & Scherpen, J. M. A. Structure Preserving Truncation of Nonlinear Port Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 4286–4293 (2018) – 10.1109/tac.2018.2811787
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control vol. 16 401–406 (2010) – 10.3166/ejc.16.401-406
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Ionescu, T. C. & Astolfi, A. Moment matching for linear port Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 7164–7169 (2011) doi:10.1109/cdc.2011.6160760 – 10.1109/cdc.2011.6160760
- Ionescu, T. C. & Astolfi, A. Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica vol. 49 2424–2434 (2013) – 10.1016/j.automatica.2013.05.006
- Gugercin, S., Polyuga, R. V., Beattie, C. A. & van der Schaft, A. J. Interpolation-based ℌ<inf>2</inf> model reduction for port-Hamiltonian systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 5362–5369 (2009) doi:10.1109/cdc.2009.5400626 – 10.1109/cdc.2009.5400626
- Mamunuzzaman, Structure preserving model order reduction of port-Hamiltonian systems. arXiv preprint (2022)
- Moser, T. & Lohmann, B. A Rosenbrock framework for tangential interpolation of port-Hamiltonian descriptor systems. Mathematical and Computer Modelling of Dynamical Systems vol. 29 210–235 (2023) – 10.1080/13873954.2023.2209798
- Polyuga, Structure preserving model reduction of port-Hamiltonian systems. Proc. 18th Int. Symposium on Mathematical Theory of Networks and Systems (2008)
- van der Schaft, A. J. & Polyuga, R. V. Structure-preserving model reduction of complex physical systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 4322–4327 (2009) doi:10.1109/cdc.2009.5399669 – 10.1109/cdc.2009.5399669
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Kokotović, P., Khalil, H. K. & O’Reilly, J. Singular Perturbation Methods in Control: Analysis and Design. (1999) doi:10.1137/1.9781611971118 – 10.1137/1.9781611971118
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Mathematics of Control, Signals, and Systems vol. 35 541–584 (2023) – 10.1007/s00498-023-00349-2
- Gerritsen, On switched Hamiltonian systems. Proceedings 15th International Symposium on Mathematical Theory of Networks and Systems (MTNS2002) (2002)
- Beattie, Port-Hamiltonian descriptor systems. arXiv preprint (2017)
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- van der Schaft, A. & Mehrmann, V. Linear Port-Hamiltonian DAE Systems Revisited. SSRN Electronic Journal (2022) doi:10.2139/ssrn.4292998 – 10.2139/ssrn.4292998
- van der Schaft, A. J. Port-Hamiltonian Differential-Algebraic Systems. Surveys in Differential-Algebraic Equations I 173–226 (2013) doi:10.1007/978-3-642-34928-7_5 – 10.1007/978-3-642-34928-7_5
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083