Port-Hamiltonian Differential-Algebraic Systems
Authors
Abstract
The basic starting point of port-Hamiltonian systems theory is network modeling ; considering the overall physical system as the interconnection of simple subsystems, mutually influencing each other via energy flow. As a result of the interconnections algebraic constraints between the state variables commonly arise. This leads to the description of the system by differential-algebraic equations (DAEs), i.e., a combination of ordinary differential equations with algebraic constraints. The basic point of view put forward in this survey paper is that the differential-algebraic equations that arise are not just arbitrary, but are endowed with a special mathematical structure; in particular with an underlying geometric structure known as a Dirac structure. It will be discussed how this knowledge can be exploited for analysis and control.
Keywords
Port-Hamiltonian systems; Passivity; Algebraic constraints; Kinematic constraints; Casimirs; Switching systems; Dirac structure; Interconnection; 34A09; 37J05; 70G45; 93B10; 93B27; 93C10
Citation
- ISBN: 9783642349270
- Publisher: Springer Berlin Heidelberg
- DOI: 10.1007/978-3-642-34928-7_5
BibTeX
@inbook{van_der_Schaft_2013,
title={{Port-Hamiltonian Differential-Algebraic Systems}},
ISBN={9783642349287},
DOI={10.1007/978-3-642-34928-7_5},
booktitle={{Surveys in Differential-Algebraic Equations I}},
publisher={Springer Berlin Heidelberg},
author={van der Schaft, A. J.},
year={2013},
pages={173--226}
}
References
- R. Abraham, Foundations of Mechanics (1978)
- Batlle, C., Massana, I. & Simo, E. Representation of a general composition of Dirac structures. IEEE Conference on Decision and Control and European Control Conference 5199–5204 (2011) doi:10.1109/cdc.2011.6160588 – 10.1109/cdc.2011.6160588
- V. Belevitch, Classical Network Theory (1968)
- A.M. Bloch, Proceedings Symposia in Pure Mathematics, Differential Geometry and Control Theory (1999)
- Brogliato, B. Nonsmooth Mechanics. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0557-2 – 10.1007/978-1-4471-0557-2
- Camlibel, M. K., Heemels, W. P. M. H., van der Schaft, A. J. & Schumacher, J. M. Switched networks and complementarity. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 50 1036–1046 (2003) – 10.1109/tcsi.2003.815195
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Sastry, S. & Desoer, C. Jump behavior of circuits and systems. IEEE Transactions on Circuits and Systems vol. 28 1109–1124 (1981) – 10.1109/tcs.1981.1084943
- Dirac, P. A. M. Generalized Hamiltonian Dynamics. Canadian Journal of Mathematics vol. 2 129–148 (1950) – 10.4153/cjm-1950-012-1
- I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations (1993)
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica vol. 35 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- K. Gerritsen, Proceedings 15th International Symposium on Mathematical Theory of Networks and Systems (MTNS2002) (2002)
- G. Golo, Nonlinear and Hybrid Systems in Automotive Control (2003)
- J. Koopman, 47th IEEE Conference on Decision and Control (2008)
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Liberzon, D. & Trenn, S. Switched nonlinear differential algebraic equations: Solution theory, Lyapunov functions, and stability. Automatica vol. 48 954–963 (2012) – 10.1016/j.automatica.2012.02.041
- B.M. Maschke, 2nd IFAC Symposium on Nonlinear Control Systems Design (NOLCOS) (1992)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Narayanan, H. Some applications of an Implicit Duality Theorem to connections of structures of special types including Dirac and reciprocal structures. Systems & Control Letters vol. 45 87–95 (2002) – 10.1016/s0167-6911(01)00167-0
- J.I. Neimark, Dynamics of Nonholonomic Systems (1972)
- Nijmeijer, H. & van der Schaft, A. Nonlinear Dynamical Control Systems. (Springer New York, 1990). doi:10.1007/978-1-4757-2101-0 – 10.1007/978-1-4757-2101-0
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- H.M. Paynter, Analysis and Design of Engineering Systems (1961)
- Schaft, A. J. van der. Equations of motion for Hamiltonian systems with constraints. Journal of Physics A: Mathematical and General vol. 20 3271–3277 (1987) – 10.1088/0305-4470/20/11/030
- van der Schaft, A. J. Implicit Hamiltonian systems with symmetry. Reports on Mathematical Physics vol. 41 203–221 (1998) – 10.1016/s0034-4877(98)80176-6
- A.J. van der Schaft, The Mathematics of Systems and Control: From Intelligent Control to Behavioral Systems (1999)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- A.J. van der Schaft, Advanced Dynamics and Control of Structures and Machines (2004)
- A.J. van der Schaft, Proc. of the International Congress of Mathematicians, vol. III, Invited Lectures (2006)
- A.J. van der Schaft, Modeling and Control of Complex Physical Systems; the Port-Hamiltonian Approach (2009)
- A.J. van der Schaft, Proc. 48th IEEE Conf. on Decision and Control (2009)
- A.J. van der Schaft, Proceedings 15th International Symposium on Mathematical Theory of Networks and Systems (2002)
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- A.J. van der Schaft, Arch. Elektron. Übertragungstech. (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- van der Schaft, A. J. & Schumacher, J. M. The complementary-slackness class of hybrid systems. Mathematics of Control, Signals and Systems vol. 9 266–301 (1996) – 10.1007/bf02551330
- van der Schaft, A. J. & Schumacher, J. M. Complementarity modeling of hybrid systems. IEEE Transactions on Automatic Control vol. 43 483–490 (1998) – 10.1109/9.664151