Energy-Storage Balanced Reduction of Port-Hamiltonian Systems
Authors
Ricardo Lopezlena, Jacquelien M.A. Scherpen, Kenji Fujimoto
Abstract
Supported by the framework of dissipativity theory, a procedure based on physical energy to balance and reduce port-Hamiltonian systems with collocated inputs and outputs is presented. Additionally, some relations with the methods of nonlinear balanced reduction are exposed. Finally a structure-preserving reduction method based on singular perturbations is shown
Keywords
Nonlinear systems; model approximation; model reduction
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2003
- Volume: 36
- Issue: 2
- Pages: 69–74
- Publisher: Elsevier BV
- DOI: 10.1016/s1474-6670(17)38869-9
- Note: 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control 2003, Seville, Spain, 3-5 April 2003
BibTeX
@article{Lopezlena_2003,
title={{Energy-Storage Balanced Reduction of Port-Hamiltonian Systems}},
volume={36},
ISSN={1474-6670},
DOI={10.1016/s1474-6670(17)38869-9},
number={2},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Lopezlena, Ricardo and Scherpen, Jacquelien M.A. and Fujimoto, Kenji},
year={2003},
pages={69--74}
}
References
- Fujimoto, K. & Scherpen, J. M. A. Model reduction for nonlinear systems based on the differential eigenstructure of Hankel operators. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) 3252–3257 doi:10.1109/cdc.2001.980322 – 10.1109/cdc.2001.980322
- Gray, W. S. & Mesko, J. P. Observability functions for linear and nonlinear systems. Systems & Control Letters 38, 99–113 (1999) – 10.1016/s0167-6911(99)00051-1
- Kato, (1966)
- Lopezlena, Energy Functions and balancing for discrete -time nonlinear systems. (2002)
- Marsden, Reduction of Symplectic Manifolds with symmetry. Rep. Math. Phis (1974)
- Nijmeijer, (1990)
- van der Schaft, (2000)
- van der Schaft, System theoretic description of physical systems. CWI Tract 3 (1984)
- van der Schaft, Slow dynamics of Hamil-tonian systems, unpublished manuscript (2002)
- van der Schaft, A. Controllability and observability for affine nonlinear Hamiltonian systems. IEEE Trans. Automat. Contr. 27, 490–492 (1982) – 10.1109/tac.1982.1102900
- van der Schaft, A. J. & Oeloff, J. E. Model reduction of linear conservative mechanical systems. IEEE Trans. Automat. Contr. 35, 729–733 (1990) – 10.1109/9.53555
- Scherpen, Balancing for Nonlinear Systems. (1994)
- Scherpen, J. M. A. Balancing for nonlinear systems. Systems & Control Letters 21, 143–153 (1993) – 10.1016/0167-6911(93)90117-o
- SCHERPEN, J. M. A. & VAN DER SCHAFT, A. J. Normalized coprime factorizations and balancing for unstable nonlinear systems. International Journal of Control 60, 1193–1222 (1994) – 10.1080/00207179408921517
- – 10.1002/(sici)1099-1239(199608)6:7<645::aid-rnc179>3.0.co;2-x
- Weiland, Balancing for Model Approximation of Dissipative Dynamical Systems. (1994)
- Willeins, Dissipative Dynamical Systems. Part I: General Theory. Arch Rational Mech. Anal (1972)