Moment matching for linear port Hamiltonian systems
Authors
Abstract
The problem of moment matching with preservation of port Hamiltonian structure is tackled. Based on the time-domain approach to linear moment matching, we characterize the (subset of) port Hamiltonian models from the set of parameterized models that match the moments of a given port Hamiltonian system, at a set of finite points. We also discuss the problem of finding port Hamiltonian reduced order models that match the Markov parameters of a given port Hamiltonian system.
Citation
- Journal: IEEE Conference on Decision and Control and European Control Conference
- Year: 2011
- Volume:
- Issue:
- Pages: 7164–7169
- Publisher: IEEE
- DOI: 10.1109/cdc.2011.6160760
BibTeX
@inproceedings{Ionescu_2011,
title={{Moment matching for linear port Hamiltonian systems}},
DOI={10.1109/cdc.2011.6160760},
booktitle={{IEEE Conference on Decision and Control and European Control Conference}},
publisher={IEEE},
author={Ionescu, T. C. and Astolfi, A.},
year={2011},
pages={7164--7169}
}
References
- ionescu, Moment matching for linear systems - Overview and new results. Proc 18th IFAC World Congress (2011)
- lohmann, Passivity preserving order reduction of linear port-hamiltonian systems by moment matching. Technische Universita?t Mu?nchen Technical Reports on Automatic Control (2009)
- Astolfi, A. Model reduction by moment matching, steady-state response and projections. 49th IEEE Conference on Decision and Control (CDC) (2010) doi:10.1109/cdc.2010.5717725 – 10.1109/cdc.2010.5717725
- gallivan, Model reduction and the solution of sylvester equations. MTNS (2006)
- Ionescu, T. C. & Astolfi, A. On moment matching with preservation of passivity and stability. 49th IEEE Conference on Decision and Control (CDC) 6189–6194 (2010) doi:10.1109/cdc.2010.5717906 – 10.1109/cdc.2010.5717906
- Astolfi, A. Model Reduction by Moment Matching for Linear and Nonlinear Systems. IEEE Trans. Automat. Contr. 55, 2321–2336 (2010) – 10.1109/tac.2010.2046044
- astolfi, Model reduction by moment matching (semi-plenary presentation). Proc IFAC Symposium on Nonlinear Control System Design (2007)
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control 16, 401–406 (2010) – 10.3166/ejc.16.401-406
- Astolfi, A. A new look at model reduction by moment matching for linear systems. 2007 46th IEEE Conference on Decision and Control 4361–4366 (2007) doi:10.1109/cdc.2007.4434367 – 10.1109/cdc.2007.4434367
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- astolfi, A note on model reduction by moment matching for nonlinear systems. Proc 8th IFAC Symposium on Nonlinear Control Systems (2010)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- gugercin, Interpolation-based H2 model reduction for port-hamiltonian systems. Proc 48th IEEE Conf on Decision and Control & 28th Chinese Control Conf (2009)
- antoulas, Projection methods for balanced model reduction. Rice University CAAM Technical Report (1999)
- Jaimoukha, I. M. & Kasenally, E. M. Implicitly Restarted Krylov Subspace Methods for Stable Partial Realizations. SIAM J. Matrix Anal. & Appl. 18, 633–652 (1997) – 10.1137/s0895479895279873
- Feldmann, P. & Freund, R. W. Efficient linear circuit analysis by Pade approximation via the Lanczos process. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 14, 639–649 (1995) – 10.1109/43.384428
- van dooren, The lanczos algorithm and pade? approximation. 21st Benelux Meeting on Systems and Control (1995)
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46, 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- polyuga, Moment matching for linear port hamiltonian systems. Proc European Control Conference (2009)