Structure-preserving model reduction of complex physical systems
Authors
A.J. van der Schaft, R.V. Polyuga
Abstract
Port-based network modeling of complex physical systems naturally leads to port-Hamiltonian system models. This motivates the search for structure-preserving model reduction methods, which allow one to replace high-dimensional port-Hamiltonian system components by reduced-order ones. In this paper we treat a family of structure-preserving reduction methods for port-Hamiltonian systems, and discuss their relation with projection-based reduction methods for DAEs.
Citation
- Journal: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference
- Year: 2009
- Volume:
- Issue:
- Pages: 4322–4327
- Publisher: IEEE
- DOI: 10.1109/cdc.2009.5399669
BibTeX
@inproceedings{van_der_Schaft_2009,
title={{Structure-preserving model reduction of complex physical systems}},
DOI={10.1109/cdc.2009.5399669},
booktitle={{Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference}},
publisher={IEEE},
author={van der Schaft, A.J. and Polyuga, R.V.},
year={2009},
pages={4322--4327}
}
References
- polyuga, Structure preserving model reduction of port-Hamiltonian systems. Inter Symposium on Mathematical Theory of Networks and Systems (2008)
- polyuga, Moment matching for linear port-Hamiltonian systems. Proceedings 10th European Control Conference (ECC’09) Budapest (2009)
- Sorensen, D. C. Passivity preserving model reduction via interpolation of spectral zeros. Systems & Control Letters vol. 54 347–360 (2005) – 10.1016/j.sysconle.2004.07.006
- van der schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Arch Elektron Ubertragungstechn (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der schaft, L2-Gain and Passivity Techniques in Nonlinear Control. Lect Notes in Control and Information Sciences (1996)
- van der Schaft, A. Balancing of Lossless and Passive Systems. IEEE Transactions on Automatic Control vol. 53 2153–2157 (2008) – 10.1109/tac.2008.930192
- crouch, Variational and Hamiltonian control systems. Lect Notes in Control and Information Sciences (1987)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- The Geoplex Consortium, Modeling and Control of Complex Physical Systems;. The Port-Hamiltonian Approach (0)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Gugercin, S., Antoulas, A. C. & Beattie, C. $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems. SIAM Journal on Matrix Analysis and Applications vol. 30 609–638 (2008) – 10.1137/060666123
- gerritsen, On switched Hamiltonian systems. Proc 15th Int Symp Mathematical Theory of Networks and Systems (2002)
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- minh, Model Reduction in a Behavioral Framework (2009)
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713