Authors

S. Gugercin, R.V. Polyuga, C.A. Beattie, A.J. van der Schaft

Abstract

Port network modeling of physical systems leads directly to an important class of passive state space systems: port-Hamiltonian systems. We consider here methods for model reduction of large scale port-Hamiltonian systems that preserve port-Hamiltonian structure and are capable of yielding reduced order models that satisfy first-order optimality conditions with respect to an H2 system error metric. The methods we consider are closely related to rational Krylov methods and variants are described using both energy and co-energy system coordinates. The resulting reduced models have port-Hamiltonian structure and therefore are guaranteed passive, while still retaining the flexibility to interpolate the true system transfer function at any (complex) frequency points that are desired.

Citation

  • Journal: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference
  • Year: 2009
  • Volume:
  • Issue:
  • Pages: 5362–5369
  • Publisher: IEEE
  • DOI: 10.1109/cdc.2009.5400626

BibTeX

@inproceedings{Gugercin_2009,
  title={{Interpolation-based ℌ<inf>2</inf> model reduction for port-Hamiltonian systems}},
  DOI={10.1109/cdc.2009.5400626},
  booktitle={{Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference}},
  publisher={IEEE},
  author={Gugercin, S. and Polyuga, R.V. and Beattie, C.A. and van der Schaft, A.J.},
  year={2009},
  pages={5362--5369}
}

Download the bib file

References

  • Žigić, D., Watson, L. T. & Beattie, C. Contragredient transformations applied to the optimal projection equations. Linear Algebra and its Applications vols 188–189 665–676 (1993) – 10.1016/0024-3795(93)90484-6
  • Gugercin, S., Antoulas, A. C. & Beattie, C. $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems. SIAM Journal on Matrix Analysis and Applications vol. 30 609–638 (2008) – 10.1137/060666123
  • Halevi, Y. Frequency weighted model reduction via optimal projection. IEEE Transactions on Automatic Control vol. 37 1537–1542 (1992) – 10.1109/9.256377
  • Hyland, D. & Bernstein, D. The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton, and Moore. IEEE Transactions on Automatic Control vol. 30 1201–1211 (1985) – 10.1109/tac.1985.1103865
  • kellems, Low-dimensional morphologically accurate models of subthreshold membrane potential. J Comput Neuroscience (2008)
  • Korvink, J. G. & Rudnyi, E. B. Oberwolfach Benchmark Collection. Lecture Notes in Computational Science and Engineering 311–315 (2005) doi:10.1007/3-540-27909-1_11 – 10.1007/3-540-27909-1_11
  • kubalinska, H2 optimal interpolation based model reduction for large-scale systems. Proceedings of the 16th International Conference on System Science (2007)
  • lepschy, Rational L2approximation: a non-gradient algorithm. Proceedings of the 30th IEEE Conference on Decision and Control (1991)
  • Meier, L. & Luenberger, D. Approximation of linear constant systems. IEEE Transactions on Automatic Control vol. 12 585–588 (1967) – 10.1109/tac.1967.1098680
  • polyuga, Structure preserving model reduction of port-Hamiltonian systems. Inter Symposium on Mathematical Theory of Networks and Systems (2008)
  • Polyuga, R. V. & van der Schaft, A. J. Structure Preserving Port-Hamiltonian Model Reduction of Electrical Circuits. Lecture Notes in Electrical Engineering 241–260 (2011) doi:10.1007/978-94-007-0089-5_14 – 10.1007/978-94-007-0089-5_14
  • YOUSUFF, A. & SKELTON, R. E. Covariance Equivalent Realizations with Application to Model Reduction of Large-Scale Systems. Control and Dynamic Systems 273–348 (1985) doi:10.1016/b978-0-12-012722-1.50014-2 – 10.1016/b978-0-12-012722-1.50014-2
  • bunse-gerstner, optimal model reduction for large scale discrete dynamical MIMO systems. Journal of Computational and Applied Mathematics (2009)
  • Wei-Yong Yan & Lam, J. An approximate approach to H/sup 2/ optimal model reduction. IEEE Transactions on Automatic Control vol. 44 1341–1358 (1999) – 10.1109/9.774107
  • Bryson, A. E., Jr. & Carrier, A. Second-order algorithm for optimal model order reduction. Journal of Guidance, Control, and Dynamics vol. 13 887–892 (1990) – 10.2514/3.25416
  • Gaier, D. Lectures on Complex Approximation. (Birkhäuser Boston, 1987). doi:10.1007/978-1-4612-4814-9 – 10.1007/978-1-4612-4814-9
  • Yousuff, A., Wagie, D. A. & Skelton, R. E. Linear system approximation via covariance equivalent realizations. Journal of Mathematical Analysis and Applications vol. 106 91–115 (1985) – 10.1016/0022-247x(85)90133-7
  • VILLEMAGNE, C. D. & SKELTON, R. E. Model reductions using a projection formulation. International Journal of Control vol. 46 2141–2169 (1987) – 10.1080/00207178708934040
  • gugercin, An iterative rational Krylov algorithm (irka) for optimal H2 model reduction. Householder Symposium XVI Seven Springs Mountain Resort (0)
  • grimme, Krylov projection methods for model reduction. (1997)
  • Antoulas, A. C. & Willems, J. C. A behavioral approach to linear exact modeling. IEEE Transactions on Automatic Control vol. 38 1776–1802 (1993) – 10.1109/9.250557
  • gugercin, A rational Krylov iteration for optimal H2 model reduction. Proc MTNS (2006)
  • Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
  • ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems. II: matrix pair. Linear Algebra and its Applications (1984)
  • Spanos, J. T., Milman, M. H. & Mingori, D. L. A new algorithm for L2 optimal model reduction. Automatica vol. 28 897–909 (1992) – 10.1016/0005-1098(92)90143-4
  • sorensen, New directions in the application of model order reduction. Eighteenth Symposium on Mathematical Theory of Networks and Systems (2008)
  • Van Dooren, P., Gallivan, K. A. & Absil, P.-A. H2-optimal model reduction of MIMO systems. Applied Mathematics Letters vol. 21 1267–1273 (2008) – 10.1016/j.aml.2007.09.015
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Wilson, D. A. Optimum solution of model-reduction problem. Proceedings of the Institution of Electrical Engineers vol. 117 1161 (1970) – 10.1049/piee.1970.0227
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493