Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems
Authors
C. Mehl, V. Mehrmann, M. Wojtylak
Abstract
A wide class of matrix pencils connected with dissipative Hamiltonian descriptor systems is investigated. In particular, the following properties are shown: all eigenvalues are in the closed left half plane, the nonzero finite eigenvalues on the imaginary axis are semisimple, the index is at most two, and there are restrictions for the possible left and right minimal indices. For the case that the eigenvalue zero is not semisimple, a structure-preserving method is presented that perturbs the given system into a Lyapunov stable system.
Citation
- Journal: SIAM Journal on Matrix Analysis and Applications
- Year: 2018
- Volume: 39
- Issue: 3
- Pages: 1489–1519
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/18m1164275
BibTeX
@article{Mehl_2018,
title={{Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems}},
volume={39},
ISSN={1095-7162},
DOI={10.1137/18m1164275},
number={3},
journal={SIAM Journal on Matrix Analysis and Applications},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Mehl, C. and Mehrmann, V. and Wojtylak, M.},
year={2018},
pages={1489--1519}
}
References
- Astolfi, A., Ortega, R. & Venkatraman, A. A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica vol. 46 182–189 (2010) – 10.1016/j.automatica.2009.10.027
- Breedveld P. C., UK (2008)
- De Teran, F., Dopico, F. & Mackey, D. Linearizations of singular matrix polynomials and the recovery of minimal indices. The Electronic Journal of Linear Algebra vol. 18 (2009) – 10.13001/1081-3810.1320
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing vol. 40 A331–A365 (2018) – 10.1137/17m1125303
- Emmrich, E. & Mehrmann, V. Operator Differential-Algebraic Equations Arising in Fluid Dynamics. Computational Methods in Applied Mathematics vol. 13 443–470 (2013) – 10.1515/cmam-2013-0018
- Foias C., New York (1990)
- Freund R. W., New York (2011)
- Fujimoto, K., Sakai, S. & Sugie, T. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica vol. 48 3054–3063 (2012) – 10.1016/j.automatica.2012.08.032
- Golo G., Heidelberg (2003)
- Gräbner, N., Mehrmann, V., Quraishi, S., Schröder, C. & von Wagner, U. Numerical methods for parametric model reduction in the simulation of disk brake squeal. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik vol. 96 1388–1405 (2016) – 10.1002/zamm.201500217
- Ishihara J. Y., Orlando, FL (2001)
- Ishihara, J. Y. & Terra, M. H. On the Lyapunov theorem for singular systems. IEEE Transactions on Automatic Control vol. 47 1926–1930 (2002) – 10.1109/tac.2002.804463
- Maddocks, J. H., Overton, M. L., Maddocks, J. H. & Overton, M. L. Stability theory for dissipatively perturbed hamiltonian systems. Communications on Pure and Applied Mathematics vol. 48 583–610 (1995) – 10.1002/cpa.3160480602
- Maehara, T. & Murota, K. Simultaneous singular value decomposition. Linear Algebra and its Applications vol. 435 106–116 (2011) – 10.1016/j.laa.2011.01.007
- Mehl, C., Mehrmann, V. & Sharma, P. Stability Radii for Linear Hamiltonian Systems with Dissipation Under Structure-Preserving Perturbations. SIAM Journal on Matrix Analysis and Applications vol. 37 1625–1654 (2016) – 10.1137/16m1067330
- Mehrmann, V. & Poloni, F. An inverse‐free ADI algorithm for computing Lagrangian invariant subspaces. Numerical Linear Algebra with Applications vol. 23 147–168 (2015) – 10.1002/nla.2018
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Paige, C. & Van Loan, C. A Schur decomposition for Hamiltonian matrices. Linear Algebra and its Applications vol. 41 11–32 (1981) – 10.1016/0024-3795(81)90086-0
- van der Schaft A. J., Spain (2006)
- van der Schaft A. J., New York (2013)
- Takaba, K., Morihira, N. & Katayama, T. A generalized Lyapunov theorem for descriptor system. Systems & Control Letters vol. 24 49–51 (1995) – 10.1016/0167-6911(94)00041-s
- Taslaman, L. Strongly Damped Quadratic Matrix Polynomials. SIAM Journal on Matrix Analysis and Applications vol. 36 461–475 (2015) – 10.1137/140959390
- Thompson, R. C. The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil. Linear Algebra and its Applications vol. 14 135–177 (1976) – 10.1016/0024-3795(76)90021-5
- Tisseur, F. & Meerbergen, K. The Quadratic Eigenvalue Problem. SIAM Review vol. 43 235–286 (2001) – 10.1137/s0036144500381988