Rotational shallow water equations with viscous damping and boundary control: structure-preserving spatial discretization
Authors
Flávio Luiz Cardoso-Ribeiro, Ghislain Haine, Laurent Lefèvre, Denis Matignon
Abstract
This paper is dedicated to structure-preserving spatial discretization of shallow water dynamics. First, a port-Hamiltonian formulation is provided for the two-dimensional rotational shallow water equations with viscous damping. Both tangential and normal boundary port variables are introduced. Then, the corresponding weak form is derived and a partitioned finite element method is applied to obtain a finite-dimensional continuous-time port-Hamiltonian approximation. Four simulation scenarios are investigated to illustrate the approach and show its effectiveness.
Keywords
Shallow water equations (SWE); Port-Hamiltonian systems (pHs); Viscous damping; Partitioned finite element method (PFEM); 76D55; 35Q35; 76M10
Citation
- Journal: Mathematics of Control, Signals, and Systems
- Year: 2024
- Volume:
- Issue:
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00498-024-00404-6
BibTeX
@article{Cardoso_Ribeiro_2024,
title={{Rotational shallow water equations with viscous damping and boundary control: structure-preserving spatial discretization}},
ISSN={1435-568X},
DOI={10.1007/s00498-024-00404-6},
journal={Mathematics of Control, Signals, and Systems},
publisher={Springer Science and Business Media LLC},
author={Cardoso-Ribeiro, Flávio Luiz and Haine, Ghislain and Lefèvre, Laurent and Matignon, Denis},
year={2024}
}
References
- Robles RR, Serrano JP (2014) Sloshing mechanical model for stability and handling qualities evaluation of the C295 aircraft with the OSD system. In: Proceedings of 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia
- Cho, Y.-S., Sohn, D.-H. & Lee, S. O. Practical modified scheme of linear shallow-water equations for distant propagation of tsunamis. Ocean Engineering vol. 34 1769–1777 (2007) – 10.1016/j.oceaneng.2006.08.014
- Clifford, M., Horton, C. & Schmitz, J. SWAFS: shallow water analysis and forecast system. Proceedings of OCEANS’94 vol. 3 III/82-III/87 – 10.1109/oceans.1994.364176
- R Barati. Barati R, Rahimi S, Akbari GH (2012) Analysis of dynamic wave model for flood routing in natural rivers. Water Sci Eng 5(3):243–258 (2012)
- Gilman, P. A. Magnetohydrodynamic “Shallow Water” Equations for the Solar Tachocline. The Astrophysical Journal vol. 544 L79–L82 (2000) – 10.1086/317291
- Zeitlin, V. Geophysical Fluid Dynamics. (2018) doi:10.1093/oso/9780198804338.001.0001 – 10.1093/oso/9780198804338.001.0001
- Fraccarollo, L. & Toro, E. F. Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. Journal of Hydraulic Research vol. 33 843–864 (1995) – 10.1080/00221689509498555
- Cardoso-Ribeiro, F. L., Brugnoli, A., Matignon, D. & Lefevre, L. Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. 2019 IEEE 58th Conference on Decision and Control (CDC) 6881–6886 (2019) doi:10.1109/cdc40024.2019.9030007 – 10.1109/cdc40024.2019.9030007
- Noble DR, Davey T, Smith HC, Kaklis P, Robinson A, Bruce T (2015) Spatial variation in currents generated in the flowave ocean energy research facility. In: Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC2015), pp 1–8 (2015). Nantes France
- Kirstetter, G. et al. Modeling rain-driven overland flow: Empirical versus analytical friction terms in the shallow water approximation. Journal of Hydrology vol. 536 1–9 (2016) – 10.1016/j.jhydrol.2016.02.022
- James, F., Lagrée, P.-Y., Le, M. H. & Legrand, M. Towards a new friction model for shallow water equations through an interactive viscous layer. ESAIM: Mathematical Modelling and Numerical Analysis vol. 53 269–299 (2019) – 10.1051/m2an/2018076
- Lagrée P-Y (2021) Equations de Saint Venant et application aux mouvements de fonds érodables, Paris, France. Class notes. http://www.lmm.jussieu.fr/%7Elagree/COURS/MFEnv/MFEnv.pdf
- Gerbeau, J.-F. & Perthame, B. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete & Continuous Dynamical Systems - B vol. 1 89–102 (2001) – 10.3934/dcdsb.2001.1.89
- Marche, F. Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanics - B/Fluids vol. 26 49–63 (2007) – 10.1016/j.euromechflu.2006.04.007
- Sundbye, L. Global Existence for the Cauchy Problem for the Viscous Shallow Water Equations. Rocky Mountain Journal of Mathematics vol. 28 (1998) – 10.1216/rmjm/1181071760
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Hamroun, B., Lefevre, L. & Mendes, E. Port-based modelling and geometric reduction for open channel irrigation systems. 2007 46th IEEE Conference on Decision and Control 1578–1583 (2007) doi:10.1109/cdc.2007.4434237 – 10.1109/cdc.2007.4434237
- Pasumarthy, R., Ambati, V. R. & van der Schaft, A. J. Port-Hamiltonian discretization for open channel flows. Systems & Control Letters vol. 61 950–958 (2012) – 10.1016/j.sysconle.2012.05.003
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control vol. 16 545–563 (2010) – 10.3166/ejc.16.545-563
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Port-Hamiltonian model of two-dimensional shallow water equations in moving containers. IMA Journal of Mathematical Control and Information vol. 37 1348–1366 (2020) – 10.1093/imamci/dnaa016
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids vol. 33 (2021) – 10.1063/5.0048359
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. Dissipative Shallow Water Equations: a port-Hamiltonian formulation. IFAC-PapersOnLine vol. 54 167–172 (2021) – 10.1016/j.ifacol.2021.11.073
- Limache, A. C., Sánchez, P. J., Dalcín, L. D. & Idelsohn, S. R. Objectivity tests for Navier–Stokes simulations: The revealing of non-physical solutions produced by Laplace formulations. Computer Methods in Applied Mechanics and Engineering vol. 197 4180–4192 (2008) – 10.1016/j.cma.2008.04.020
- Leborgne G (2023) Objectivity in continuum mechanics, an introduction. motions, Eulerian and Lagrangian variables and functions, deformation gradient, Lie derivatives, velocity-addition formula, Coriolis. arXiv preprint arXiv:2301.01056
- A Bossavit. Bossavit A (1998) Computational electromagnetism: variational formulations, complementarity, edge elements. Academic Press, San Diego (1998)
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Ferraro, G., Fournié, M. & Haine, G. Simulation and control of interactions in multi-physics, a Python package for port-Hamiltonian systems. IFAC-PapersOnLine vol. 58 119–124 (2024) – 10.1016/j.ifacol.2024.08.267
- Ghislain Haine, G. H., Denis Matignon, D. M. & Anass Serhani, A. S. Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled $N$-Dimensional Wave Equation as a Port-Hamiltonian System. International Journal of Numerical Analysis and Modeling vol. 20 92–133 (2023) – 10.4208/ijnam2023-1005
- Boyer, F. & Fabrie, P. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences (Springer New York, 2013). doi:10.1007/978-1-4614-5975-0 – 10.1007/978-1-4614-5975-0
- Cotter, C. J. Compatible finite element methods for geophysical fluid dynamics. Acta Numerica vol. 32 291–393 (2023) – 10.1017/s0962492923000028
- Arnold, D. N., Falk, R. S. & Winther, R. Finite element exterior calculus, homological techniques, and applications. Acta Numerica vol. 15 1–155 (2006) – 10.1017/s0962492906210018
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- AJ Chorin. Chorin AJ, Marsden JE (1992) A mathematical introduction to fluid mechanics, vol 4. Texts in Applied Mathematics. Springer, New York (1992)
- Moses Badlyan A, Maschke B, Beattie CA, Mehrmann V (2018) Open physical systems: from GENERIC to Port-Hamiltonian systems. In: Proceeding of the International Symposium on Mathematical Theory of Networks and Systems, Hong Kong, China, pp 204–211
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Mora, L. A., Le Gorrec, Y., Matignon, D., Ramirez, H. & Yuz, J. I. On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids. Physics of Fluids vol. 33 (2021) – 10.1063/5.0067784
- Sundbye, L. Global Existence for the Dirichlet Problem for the Viscous Shallow Water Equations. Journal of Mathematical Analysis and Applications vol. 202 236–258 (1996) – 10.1006/jmaa.1996.0315
- Kloeden, P. E. Global Existence of Classical Solutions in the Dissipative Shallow Water Equations. SIAM Journal on Mathematical Analysis vol. 16 301–315 (1985) – 10.1137/0516022
- Serhani, A., Matignon, D. & Haine, G. A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. Lecture Notes in Computer Science 549–558 (2019) doi:10.1007/978-3-030-26980-7_57 – 10.1007/978-3-030-26980-7_57
- AJ van der Schaft. van der Schaft AJ (2013) Port-Hamiltonian differential-algebraic systems. Springer, Berlin, pp 173–226 (2013)
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Mathematics of Control, Signals, and Systems vol. 35 541–584 (2023) – 10.1007/s00498-023-00349-2
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- van der Schaft, A. & Mehrmann, V. Linear port-Hamiltonian DAE systems revisited. Systems & Control Letters vol. 177 105564 (2023) – 10.1016/j.sysconle.2023.105564
- Bendimerad-Hohl, A., Haine, G., Matignon, D. & Maschke, B. Structure-preserving discretization of a coupled Allen-Cahn and heat equation system. IFAC-PapersOnLine vol. 55 99–104 (2022) – 10.1016/j.ifacol.2022.08.037
- Bendimerad-Hohl, A., Haine, G. & Matignon, D. Structure-preserving Discretization of the Cahn-Hilliard Equations Recast as a Port-Hamiltonian System. Lecture Notes in Computer Science 192–201 (2023) doi:10.1007/978-3-031-38299-4_21 – 10.1007/978-3-031-38299-4_21
- Balay, S. et al. PETSc/TAO Users Manual (Rev. 3.20). http://dx.doi.org/10.2172/2205494 (2023) doi:10.2172/2205494 – 10.2172/2205494
- Stoker, J. J. Water Waves. (1992) doi:10.1002/9781118033159 – 10.1002/9781118033159