Structure-preserving Discretization of the Cahn-Hilliard Equations Recast as a Port-Hamiltonian System
Authors
Antoine Bendimerad-Hohl, Ghislain Haine, Denis Matignon
Abstract
The structure-preserving discretization of the Cahn-Hillard equation, a phase field model describing phase separation with diffuse interface, is proposed using the Partitioned Finite Element Method. The discrete counter-part of the power balance is proved and a sufficient condition for the phase preservation is provided.
Keywords
Phase field; port-Hamiltonian system; Structure-preserving discretization
Citation
- ISBN: 9783031382987
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-38299-4_21
- Note: International Conference on Geometric Science of Information
BibTeX
@inbook{Bendimerad_Hohl_2023,
title={{Structure-preserving Discretization of the Cahn-Hilliard Equations Recast as a Port-Hamiltonian System}},
ISBN={9783031382994},
ISSN={1611-3349},
DOI={10.1007/978-3-031-38299-4_21},
booktitle={{Geometric Science of Information}},
publisher={Springer Nature Switzerland},
author={Bendimerad-Hohl, Antoine and Haine, Ghislain and Matignon, Denis},
year={2023},
pages={192--201}
}
References
- Beier, N., Sego, D., Donahue, R. & Biggar, K. Laboratory investigation on freeze separation of saline mine waste water. Cold Regions Science and Technology vol. 48 239–247 (2007) – 10.1016/j.coldregions.2006.12.002
- Bendimerad-Hohl, A., Haine, G., Matignon, D. & Maschke, B. Structure-preserving discretization of a coupled Allen-Cahn and heat equation system. IFAC-PapersOnLine vol. 55 99–104 (2022) – 10.1016/j.ifacol.2022.08.037
- Boettinger, W. J., Warren, J. A., Beckermann, C. & Karma, A. Phase-Field Simulation of Solidification. Annual Review of Materials Research vol. 32 163–194 (2002) – 10.1146/annurev.matsci.32.101901.155803
- Cahn, J. W. & Hilliard, J. E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics vol. 28 258–267 (1958) – 10.1063/1.1744102
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Jon Matteo Church, J. M. C. et al. High Accuracy Benchmark Problems for Allen-Cahn and Cahn-Hilliard Dynamics. Communications in Computational Physics vol. 26 947–972 (2019) – 10.4208/cicp.oa-2019-0006
- Egger, H., Habrich, O. & Shashkov, V. On the Energy Stable Approximation of Hamiltonian and Gradient Systems. Computational Methods in Applied Mathematics vol. 21 335–349 (2020) – 10.1515/cmam-2020-0025
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems. Journal of Geometry and Physics vol. 111 169–193 (2017) – 10.1016/j.geomphys.2016.08.018
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: Continuum systems. Journal of Geometry and Physics vol. 111 194–212 (2017) – 10.1016/j.geomphys.2016.08.019
- van der Ham, F., Witkamp, G. J., de Graauw, J. & van Rosmalen, G. M. Eutectic freeze crystallization: Application to process streams and waste water purification. Chemical Engineering and Processing: Process Intensification vol. 37 207–213 (1998) – 10.1016/s0255-2701(97)00055-x
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Vincent, B., Couenne, F., Lefèvre, L. & Maschke, B. Port Hamiltonian systems with moving interface: a phase field approach. IFAC-PapersOnLine vol. 53 7569–7574 (2020) – 10.1016/j.ifacol.2020.12.1353