Observer-based boundary control of distributed port-Hamiltonian systems
Authors
Jesús Toledo, Yongxin Wu, Héctor Ramírez, Yann Le Gorrec
Abstract
An observer-based boundary controller for infinite-dimensional port-Hamiltonian systems defined on 1D spatial domains is proposed. The design is based on an early-lumping approach in which a finite-dimensional approximation of the infinite-dimensional system derived by spatial discretization is used to design the observer and the controller. As long as the finite-dimensional approximation approaches the infinite-dimensional model, the performances also do. The main contribution is a constructive method which guarantees that the interconnection between the controller and the infinite-dimensional system is asymptotically stable. A Timoshenko beam model has been used to illustrate the approach.
Keywords
Infinite-dimensional systems; Port-Hamiltonian systems; Boundary control systems; Luenberger observer; State feedback
Citation
- Journal: Automatica
- Year: 2020
- Volume: 120
- Issue:
- Pages: 109130
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2020.109130
BibTeX
@article{Toledo_2020,
title={{Observer-based boundary control of distributed port-Hamiltonian systems}},
volume={120},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2020.109130},
journal={Automatica},
publisher={Elsevier BV},
author={Toledo, Jesús and Wu, Yongxin and Ramírez, Héctor and Le Gorrec, Yann},
year={2020},
pages={109130}
}
References
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Bontsema, J. & Curtain, R. F. A note on spillover and robustness for flexible systems. IEEE Transactions on Automatic Control vol. 33 567–569 (1988) – 10.1109/9.1253
- Curtain, (2012)
- Duindam, (2009)
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control vol. 6 349–385 (1968) – 10.1137/0306025
- Guo, B.-Z. & Xu, C.-Z. The Stabilization of a One-Dimensional Wave Equation by Boundary Feedback With Noncollocated Observation. IEEE Transactions on Automatic Control vol. 52 371–377 (2007) – 10.1109/tac.2006.890385
- Horn, (2012)
- Humaloja, J.-P. & Paunonen, L. Robust Regulation of Infinite-Dimensional Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1480–1486 (2018) – 10.1109/tac.2017.2748055
- Jacob, (2012)
- Kosmidou, O. I. Generalized Riccati equations associated with guaranteed cost control: An overview of solutions and features. Applied Mathematics and Computation vol. 191 511–520 (2007) – 10.1016/j.amc.2007.02.157
- Lanzon, A., Feng, Y., Anderson, B. D. O. & Rotkowitz, M. Computing the Positive Stabilizing Solution to Algebraic Riccati Equations With an Indefinite Quadratic Term via a Recursive Method. IEEE Transactions on Automatic Control vol. 53 2280–2291 (2008) – 10.1109/tac.2008.2006108
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. & Califano, F. Dissipativity-based boundary control of linear distributed port-Hamiltonian systems. Automatica vol. 95 54–62 (2018) – 10.1016/j.automatica.2018.05.029
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Meurer, T. On the Extended Luenberger-Type Observer for Semilinear Distributed-Parameter Systems. IEEE Transactions on Automatic Control vol. 58 1732–1743 (2013) – 10.1109/tac.2013.2243312
- Prajna, S., van der Schaft, A. & Meinsma, G. An LMI approach to stabilization of linear port-controlled Hamiltonian systems. Systems & Control Letters vol. 45 371–385 (2002) – 10.1016/s0167-6911(01)00195-5
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Tao, G. & Ioannou, P. A. Strictly positive real matrices and the Lefschetz-Kalman-Yakubovich lemma. IEEE Transactions on Automatic Control vol. 33 1183–1185 (1988) – 10.1109/9.14449
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Villegas, (2007)
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced order LQG control design for port Hamiltonian systems. Automatica vol. 95 86–92 (2018) – 10.1016/j.automatica.2018.05.003