Symplectic-mixed finite element approximation of linear acoustic wave equations
Authors
Robert C. Kirby, Thinh Tri Kieu
Abstract
We apply mixed finite element approximations to the first-order form of the acoustic wave equation. The semidiscrete method exactly conserves the system energy. A fully discrete method employing the symplectic Euler time method in time exactly conserves a positive-definite pertubed energy functional that is equivalent to the actual energy under a CFL condition. In addition to proving optimal-order \( \)L^\infty (L^2)\( \) L ∞ ( L 2 ) estimates, we also develop a bootstrap technique that allows us to derive stability and error bounds for the time derivatives and divergence of the vector variable beyond the standard under some additional regularity assumptions.
Keywords
65M60; 65M12; 65P10
Citation
- Journal: Numerische Mathematik
- Year: 2015
- Volume: 130
- Issue: 2
- Pages: 257–291
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00211-014-0667-4
BibTeX
@article{Kirby_2014,
title={{Symplectic-mixed finite element approximation of linear acoustic wave equations}},
volume={130},
ISSN={0945-3245},
DOI={10.1007/s00211-014-0667-4},
number={2},
journal={Numerische Mathematik},
publisher={Springer Science and Business Media LLC},
author={Kirby, Robert C. and Kieu, Thinh Tri},
year={2014},
pages={257--291}
}
References
- Geveci, T. On the application of mixed finite element methods to the wave equations. ESAIM: Mathematical Modelling and Numerical Analysis vol. 22 243–250 (1988) – 10.1051/m2an/1988220202431
- Glowinski, R. & Rossi, T. A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I): Controllability problem formulation and related iterative solution. Comptes Rendus. Mathématique vol. 343 493–498 (2006) – 10.1016/j.crma.2006.08.002
- LC Cowsar, Comput. Methods Appl. Mech. Eng. (1990)
- Jenkins, E. W., Rivia`ere, B. & Wheeler, M. F. A Priori Error Estimates for Mixed Finite Element Approximations of the Acoustic Wave Equation. SIAM Journal on Numerical Analysis vol. 40 1698–1715 (2002) – 10.1137/s0036142901388068
- Jenkins, E. W. Numerical solution of the acoustic wave equation using Raviart–Thomas elements. Journal of Computational and Applied Mathematics vol. 206 420–431 (2007) – 10.1016/j.cam.2006.08.003
- Chung, E. T. & Engquist, B. Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions. SIAM Journal on Numerical Analysis vol. 47 3820–3848 (2009) – 10.1137/080729062
- Arnold, D. N., Falk, R. S. & Winther, R. Finite element exterior calculus, homological techniques, and applications. Acta Numerica vol. 15 1–155 (2006) – 10.1017/s0962492906210018
- Bochev, P. B. & Hyman, J. M. Principles of Mimetic Discretizations of Differential Operators. The IMA Volumes in Mathematics and its Applications 89–119 doi:10.1007/0-387-38034-5_5 – 10.1007/0-387-38034-5_5
- Rieben, R. N., Rodrigue, G. H. & White, D. A. A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids. Journal of Computational Physics vol. 204 490–519 (2005) – 10.1016/j.jcp.2004.10.030
- Rieben, R., White, D. & Rodrigue, G. High-Order Symplectic Integration Methods for Finite Element Solutions to Time Dependent Maxwell Equations. IEEE Transactions on Antennas and Propagation vol. 52 2190–2195 (2004) – 10.1109/tap.2004.832356
- Brenner, S. C. & Scott, L. R. The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics (Springer New York, 2008). doi:10.1007/978-0-387-75934-0 – 10.1007/978-0-387-75934-0
- Nedelec, J. C. Mixed finite elements in ?3. Numerische Mathematik vol. 35 315–341 (1980) – 10.1007/bf01396415
- Raviart, P. A. & Thomas, J. M. A mixed finite element method for 2-nd order elliptic problems. Lecture Notes in Mathematics 292–315 (1977) doi:10.1007/bfb0064470 – 10.1007/bfb0064470
- Douglas, J. & Roberts, J. E. Global estimates for mixed methods for second order elliptic equations. Mathematics of Computation vol. 44 39–52 (1985) – 10.1090/s0025-5718-1985-0771029-9
- Arnold, D. N., Boffi, D. & Falk, R. S. QuadrilateralH(div) Finite Elements. SIAM Journal on Numerical Analysis vol. 42 2429–2451 (2005) – 10.1137/s0036142903431924
- Bochev, P. B. & Ridzal, D. Rehabilitation of the Lowest-Order Raviart–Thomas Element on Quadrilateral Grids. SIAM Journal on Numerical Analysis vol. 47 487–507 (2009) – 10.1137/070704265
- Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics (Springer New York, 1991). doi:10.1007/978-1-4612-3172-1 – 10.1007/978-1-4612-3172-1
- Hairer, E., Hochbruck, M., Iserles, A. & Lubich, C. Geometric Numerical Integration. Oberwolfach Reports vol. 3 805–882 (2006) – 10.4171/owr/2006/14
- Logg, A. Multi-Adaptive Galerkin Methods for ODEs I. SIAM Journal on Scientific Computing vol. 24 1879–1902 (2003) – 10.1137/s1064827501389722
- CJ Budd, Handb. Numer. Anal. (2003)
- Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering (Springer Berlin Heidelberg, 2012). doi:10.1007/978-3-642-23099-8 – 10.1007/978-3-642-23099-8
- Hientzsch, B. Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions. Lecture Notes in Computational Science and Engineering 597–604 doi:10.1007/3-540-26825-1_63 – 10.1007/3-540-26825-1_63
- Weiser, A. & Wheeler, M. F. On Convergence of Block-Centered Finite Differences for Elliptic Problems. SIAM Journal on Numerical Analysis vol. 25 351–375 (1988) – 10.1137/0725025
- Wheeler, M. F. & Yotov, I. A Cell-Centered Finite Difference Method on Quadrilaterals. The IMA Volumes in Mathematics and its Applications 189–207 doi:10.1007/0-387-38034-5_10 – 10.1007/0-387-38034-5_10