Modeling and control of an IPMC actuated flexible beam under the port-Hamiltonian framework
Authors
Yongxin Wu, François Lamoline, Joseph Winkin, Yann Le Gorrec
Abstract
This paper deals with the modeling and control problem of an ionic polymer metal composites (IPMC) actuated flexible beam. The mechanical dynamic of the flexible beam and the electrical dynamic of the IPMC actuators have been taken into account in the modeling approach. Furthermore, in order to achieve the desired configuration of this IPMC actuated flexible beam, a control strategy is proposed based on the Linear quadratic Gaussian (LQG) control and damping injection. Finally, the proposed model is validated on a real experimental set-up. The effectiveness of the proposed control strategy is shown by the simulation results based on the real physical parameters of the experimental set-up.
Keywords
Port-Hamiltonian systems; Distributed control; LQG method; IPMC; Flexible beam
Citation
- Journal: IFAC-PapersOnLine
- Year: 2019
- Volume: 52
- Issue: 2
- Pages: 108–113
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2019.08.019
- Note: 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019- Oaxaca, Mexico, 20–24 May 2019
BibTeX
@article{Wu_2019,
title={{Modeling and control of an IPMC actuated flexible beam under the port-Hamiltonian framework}},
volume={52},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2019.08.019},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Wu, Yongxin and Lamoline, François and Winkin, Joseph and Gorrec, Yann Le},
year={2019},
pages={108--113}
}
References
- Chikhaoui, (2014)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Gutta, S., Lee, J. S., Trabia, M. B. & Yim, W. Modeling of ionic polymer metal composite actuator dynamics using a large deflection beam model. Smart Materials and Structures vol. 18 115023 (2009) – 10.1088/0964-1726/18/11/115023
- Harkort, C. & Deutscher, J. Stability and passivity preserving Petrov–Galerkin approximation of linear infinite-dimensional systems. Automatica vol. 48 1347–1352 (2012) – 10.1016/j.automatica.2012.04.010
- Jacob, (2012)
- Jonckheere, E. & Silverman, L. A new set of invariants for linear systems–Application to reduced order compensator design. IEEE Transactions on Automatic Control vol. 28 953–964 (1983) – 10.1109/tac.1983.1103159
- King, B. B., Hovakimyan, N., Evans, K. A. & Buhl, M. Reduced order controllers for distributed parameter systems: LQG balanced truncation and an adaptive approach. Mathematical and Computer Modelling vol. 43 1136–1149 (2006) – 10.1016/j.mcm.2005.05.031
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Shahinpoor, M. & Kim, K. J. Ionic polymer-metal composites: I. Fundamentals. Smart Materials and Structures vol. 10 819–833 (2001) – 10.1088/0964-1726/10/4/327
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced order LQG control design for port Hamiltonian systems. Automatica vol. 95 86–92 (2018) – 10.1016/j.automatica.2018.05.003