Infinite dimensional model of a double flexible-link manipulator: The Port-Hamiltonian approach
Authors
Andrea Mattioni, Yongxin Wu, Yann Le Gorrec
Abstract
This paper proposes a modular and control oriented model of a double flexible-link manipulator that stems from the modelling of a spatial flexible robot. The model consists of the power preserving interconnection between two infinite dimensional systems describing the beam’s motion and deformation with a finite dimensional nonlinear system describing the dynamics of the actuated rotating joints. To derive the model, Timoshenko’s assumptions are made for the flexible beams. Using Hamilton’s principle, the dynamic equations of the system are derived and then written in the Port-Hamiltonian (PH) framework through a proper choice of the state variables. These so called energy variables allow to write the total energy as a quadratic form with respect to a state dependent energy matrix. The resulting model is shown to be a passive system, a convenient property for control design purposes.
Keywords
Flexible arms; Flexible robotics; Port-Hamiltonian systems; Distributed parameter systems; Boundary control systems; Discretization; Finite dimensional approximation
Citation
- Journal: Applied Mathematical Modelling
- Year: 2020
- Volume: 83
- Issue:
- Pages: 59–75
- Publisher: Elsevier BV
- DOI: 10.1016/j.apm.2020.02.008
BibTeX
@article{Mattioni_2020,
title={{Infinite dimensional model of a double flexible-link manipulator: The Port-Hamiltonian approach}},
volume={83},
ISSN={0307-904X},
DOI={10.1016/j.apm.2020.02.008},
journal={Applied Mathematical Modelling},
publisher={Elsevier BV},
author={Mattioni, Andrea and Wu, Yongxin and Le Gorrec, Yann},
year={2020},
pages={59--75}
}
References
- De Luca, A. & Siciliano, B. Closed-form dynamic model of planar multilink lightweight robots. IEEE Transactions on Systems, Man, and Cybernetics vol. 21 826–839 (1991) – 10.1109/21.108300
- Spong, M. W. Modeling and Control of Elastic Joint Robots. Journal of Dynamic Systems, Measurement, and Control vol. 109 310–318 (1987) – 10.1115/1.3143860
- Zhang, D. & Zhou, S. Dynamic analysis of flexible-link and flexible-joint robots. Applied Mathematics and Mechanics vol. 27 695–704 (2006) – 10.1007/s10483-006-0516-1
- Korayem, M. H. & Dehkordi, S. F. Derivation of dynamic equation of viscoelastic manipulator with revolute–prismatic joint using recursive Gibbs–Appell formulation. Nonlinear Dynamics vol. 89 2041–2064 (2017) – 10.1007/s11071-017-3569-z
- Junkins, J. L. & Kim, Y. Introduction to Dynamics and Control of Flexible Structures. (1993) doi:10.2514/4.862076 – 10.2514/4.862076
- Xiaoping Zhang, Wenwei Xu, Nair, S. S. & Chellaboina, V. PDE modeling and control of a flexible two-link manipulator. IEEE Transactions on Control Systems Technology vol. 13 301–312 (2005) – 10.1109/tcst.2004.842446
- Zhang, L. & Liu, J. Adaptive boundary control for flexible two‐link manipulator based on partial differential equation dynamic model. IET Control Theory & Applications vol. 7 43–51 (2013) – 10.1049/iet-cta.2011.0593
- Dogan, M. & Morgül, Ö. On the Control of Two-link Flexible Robot Arm with Nonuniform Cross Section. Journal of Vibration and Control vol. 16 619–646 (2010) – 10.1177/1077546309340994
- Luo, (1999)
- Wei, J., Cao, D., Liu, L. & Huang, W. Global mode method for dynamic modeling of a flexible-link flexible-joint manipulator with tip mass. Applied Mathematical Modelling vol. 48 787–805 (2017) – 10.1016/j.apm.2017.02.025
- Morgul, O. Orientation and stabilization of a flexible beam attached to a rigid body: planar motion. IEEE Transactions on Automatic Control vol. 36 953–962 (1991) – 10.1109/9.133188
- Luo, Z.-H. & Feng, D.-X. Nonlinear torque control of a single-link flexible robot. Journal of Robotic Systems vol. 16 25–35 (1999) – 10.1002/(sici)1097-4563(199901)16:1<25::aid-rob3>3.0.co;2-4
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Macchelli, Distributed port Hamiltonian formulation of the Timoshenko beam: Modeling and control. In Proc. of 4th MATHMOD Vienna, 5–7 February (2003)
- Wang, M., Bestler, A. & Kotyczka, P. Modeling, discretization and motion control of a flexible beam in the port-Hamiltonian framework. IFAC-PapersOnLine vol. 50 6799–6806 (2017) – 10.1016/j.ifacol.2017.08.2511
- Bo, An energy-based nonlinear control for a two-link flexible manipulator. Trans. Jap. Soc. Aeronaut. Space Sci. (2005)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Duindam, (2009)
- Khairudin, M., Mohamed, Z., Husain, A. R. & Ahmad, M. A. Dynamic Modelling and Characterisation of a Two-Link Flexible Robot Manipulator. Journal of Low Frequency Noise, Vibration and Active Control vol. 29 207–219 (2010) – 10.1260/0263-0923.29.3.207