Power-controlled Hamiltonian systems: Application to electrical systems with constant power loads
Authors
Pooya Monshizadeh, Juan E. Machado, Romeo Ortega, Arjan van der Schaft
Abstract
We study a type of port-Hamiltonian system in which the controller or disturbance is not applied to the flow variables, but to the systems power balance equation—a scenario that appears in many practical applications. A suitable framework is provided to model these systems and to investigate their shifted passivity properties, based on which a stability analysis is carried out. The applicability of the results is illustrated with the important problem of stability analysis of electrical circuits with constant power loads.
Keywords
Port-Hamiltonian systems; Passivity theory; Stability of nonlinear systems; Constant power loads
Citation
- Journal: Automatica
- Year: 2019
- Volume: 109
- Issue:
- Pages: 108527
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2019.108527
BibTeX
@article{Monshizadeh_2019,
title={{Power-controlled Hamiltonian systems: Application to electrical systems with constant power loads}},
volume={109},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2019.108527},
journal={Automatica},
publisher={Elsevier BV},
author={Monshizadeh, Pooya and Machado, Juan E. and Ortega, Romeo and van der Schaft, Arjan},
year={2019},
pages={108527}
}
References
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Anand, S. & Fernandes, B. G. Reduced-Order Model and Stability Analysis of Low-Voltage DC Microgrid. IEEE Transactions on Industrial Electronics vol. 60 5040–5049 (2013) – 10.1109/tie.2012.2227902
- Arcak, (2016)
- Barabanov, N., Ortega, R., Grino, R. & Polyak, B. On Existence and Stability of Equilibria of Linear Time-Invariant Systems With Constant Power Loads. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 63 114–121 (2016) – 10.1109/tcsi.2015.2497559
- Belkhayat, Large signal stability criteria for distributed systems with constant power loads. (1995)
- Bolognani, S. & Zampieri, S. On the Existence and Linear Approximation of the Power Flow Solution in Power Distribution Networks. IEEE Transactions on Power Systems vol. 31 163–172 (2016) – 10.1109/tpwrs.2015.2395452
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Bregman, L. M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics vol. 7 200–217 (1967) – 10.1016/0041-5553(67)90040-7
- Cavanagh, K., Belk, J. A. & Turitsyn, K. Transient Stability Guarantees for Ad Hoc DC Microgrids. IEEE Control Systems Letters vol. 2 139–144 (2018) – 10.1109/lcsys.2017.2764441
- Cezar, Stability of interconnected DC converters. (2015)
- De Persis, C., Weitenberg, E. R. A. & Dörfler, F. A power consensus algorithm for DC microgrids. Automatica vol. 89 364–375 (2018) – 10.1016/j.automatica.2017.12.026
- Desoer, (2009)
- Emadi, A., Khaligh, A., Rivetta, C. H. & Williamson, G. A. Constant Power Loads and Negative Impedance Instability in Automotive Systems: Definition, Modeling, Stability, and Control of Power Electronic Converters and Motor Drives. IEEE Transactions on Vehicular Technology vol. 55 1112–1125 (2006) – 10.1109/tvt.2006.877483
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters vol. 56 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- Keenan, J. H. Availability and irreversibility in thermodynamics. British Journal of Applied Physics vol. 2 183–192 (1951) – 10.1088/0508-3443/2/7/302
- Machado, J. E., Grino, R., Barabanov, N., Ortega, R. & Polyak, B. On Existence of Equilibria of Multi-Port Linear AC Networks With Constant-Power Loads. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 64 2772–2782 (2017) – 10.1109/tcsi.2017.2697906
- Marx, D., Magne, P., Nahid-Mobarakeh, B., Pierfederici, S. & Davat, B. Large Signal Stability Analysis Tools in DC Power Systems With Constant Power Loads and Variable Power Loads—A Review. IEEE Transactions on Power Electronics vol. 27 1773–1787 (2012) – 10.1109/tpel.2011.2170202
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Monshizadeh, Nonlinear analysis of an improved swing equation. (2016)
- Monshizadeh, Stability and frequency regulation of inverters with capacitive inertia. (2017)
- Monshizadeh, N., Monshizadeh, P., Ortega, R. & van der Schaft, A. Conditions on shifted passivity of port-Hamiltonian systems. Systems & Control Letters vol. 123 55–61 (2019) – 10.1016/j.sysconle.2018.10.010
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Pavlov, A. & Marconi, L. Incremental passivity and output regulation. Systems & Control Letters vol. 57 400–409 (2008) – 10.1016/j.sysconle.2007.10.008
- Sanchez, S., Ortega, R., Grino, R., Bergna, G. & Molinas, M. Conditions for Existence of Equilibria of Systems With Constant Power Loads. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 61 2204–2211 (2014) – 10.1109/tcsi.2013.2295953
- van der Schaft, (2017)
- van der Schaft, (2014)
- Simpson-Porco, On resistive networks of constant-power devices. IEEE Transactions on Circuits and Systems II (2015)
- Jun Zhou & Ohsawa, Y. Improved Swing Equation and Its Properties in Synchronous Generators. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 56 200–209 (2009) – 10.1109/tcsi.2008.924895