Port-Hamiltonian Formulations of Some Elastodynamics Theories of Isotropic and Linearly Elastic Shells: Naghdi–Reissner’s Moderately Thick Shells
Authors
Miguel Charlotte, Ignacio Fernandez Núnez, Yves Gourinat, Denis Matignon
Abstract
The port-Hamiltonian system approach is intended to be an innovative and unifying way of modeling multiphysics systems, by expressing all of them as systems of conservation laws. Indeed, the increasing developments in recent years allow finding better control and coupling strategies. This work aimed to apply such an approach to Naghdi–Reissner’s five-kinematic-field shell model in linear elasticity, while including often-neglected higher-order intrinsic geometric coupling effects, therefore preparing the theoretical background required for the coupling (or interconnection) with an acoustic fluid model and the different types of interactions that can arise among them. The model derived thusly can be used for controller design in a wide variety of applications such as inflatable space structures, launcher tank vibration damping, payload vibration protection using smart materials, and many other related applications.
Citation
- Journal: Applied Sciences
- Year: 2023
- Volume: 13
- Issue: 4
- Pages: 2608
- Publisher: MDPI AG
- DOI: 10.3390/app13042608
BibTeX
@article{Charlotte_2023,
title={{Port-Hamiltonian Formulations of Some Elastodynamics Theories of Isotropic and Linearly Elastic Shells: Naghdi–Reissner’s Moderately Thick Shells}},
volume={13},
ISSN={2076-3417},
DOI={10.3390/app13042608},
number={4},
journal={Applied Sciences},
publisher={MDPI AG},
author={Charlotte, Miguel and Núnez, Ignacio Fernandez and Gourinat, Yves and Matignon, Denis},
year={2023},
pages={2608}
}
References
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Marsden, Introduction to mechanics and symmetry: A Basic Exposition of Classical Mechanical Systems. Phys. Today (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Wu, Y., Hamroun, B., Gorrec, Y. L. & Maschke, B. Power preserving model reduction of 2D vibro-acoustic system: A port Hamiltonian approach. IFAC-PapersOnLine vol. 48 206–211 (2015) – 10.1016/j.ifacol.2015.10.240
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- Abdollahzadeh Jamalabadi, M. Y. An Improvement of Port-Hamiltonian Model of Fluid Sloshing Coupled by Structure Motion. Water vol. 10 1721 (2018) – 10.3390/w10121721
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Cardoso-Ribeiro, F. L., Brugnoli, A., Matignon, D. & Lefevre, L. Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. 2019 IEEE 58th Conference on Decision and Control (CDC) 6881–6886 (2019) doi:10.1109/cdc40024.2019.9030007 – 10.1109/cdc40024.2019.9030007
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Schoberl, M. & Siuka, A. Analysis and comparison of port-Hamiltonian formulations for field theories - demonstrated by means of the Mindlin plate. 2013 European Control Conference (ECC) 548–553 (2013) doi:10.23919/ecc.2013.6669137 – 10.23919/ecc.2013.6669137
- Schöberl, M. & Schlacher, K. Port-Hamiltonian formulation for Higher-order PDEs. IFAC-PapersOnLine vol. 48 244–249 (2015) – 10.1016/j.ifacol.2015.10.247
- Voß, T. & Scherpen, J. M. A. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation. SIAM Journal on Control and Optimization vol. 52 493–519 (2014) – 10.1137/090774598
- Matignon, D. & Hélie, T. A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems. European Journal of Control vol. 19 486–494 (2013) – 10.1016/j.ejcon.2013.10.003
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids vol. 33 (2021) – 10.1063/5.0048359
- Haine, G., Matignon, D. & Monteghetti, F. Structure-preserving discretization of Maxwell’s equations as a port-Hamiltonian system. IFAC-PapersOnLine vol. 55 424–429 (2022) – 10.1016/j.ifacol.2022.11.090
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. A Port-Hamiltonian formulation of linear thermoelasticity and its mixed finite element discretization. Journal of Thermal Stresses vol. 44 643–661 (2021) – 10.1080/01495739.2021.1917322
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Port-Hamiltonian model of two-dimensional shallow water equations in moving containers. IMA Journal of Mathematical Control and Information vol. 37 1348–1366 (2020) – 10.1093/imamci/dnaa016
- Haine, Long-time behavior of a coupled heat-wave system using a structure-preserving finite element method. Math. Rep. (2022)
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Ge, Z., Kruse, H. P. & Marsden, J. E. The limits of hamiltonian structures in three-dimensional elasticity, shells, and rods. Journal of Nonlinear Science vol. 6 19–57 (1996) – 10.1007/bf02433809
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Channell, P. J. & Scovel, C. Symplectic integration of Hamiltonian systems. Nonlinearity vol. 3 231–259 (1990) – 10.1088/0951-7715/3/2/001
- Kong, L., Liu, R. & Zheng, X. A survey on symplectic and multi-symplectic algorithms. Applied Mathematics and Computation vol. 186 670–684 (2007) – 10.1016/j.amc.2006.08.012
- Sharma, H., Patil, M. & Woolsey, C. A review of structure-preserving numerical methods for engineering applications. Computer Methods in Applied Mechanics and Engineering vol. 366 113067 (2020) – 10.1016/j.cma.2020.113067
- Sanz-Serna, J. M. Symplectic Runge-Kutta and related methods: recent results. Physica D: Nonlinear Phenomena vol. 60 293–302 (1992) – 10.1016/0167-2789(92)90245-i
- Qualitative and Quantitative Behaviour of Planetary Systems. (Springer Netherlands, 1993). doi:10.1007/978-94-011-2030-2 – 10.1007/978-94-011-2030-2
- Kane, C., Marsden, J. E. & Ortiz, M. Symplectic-energy-momentum preserving variational integrators. Journal of Mathematical Physics vol. 40 3353–3371 (1999) – 10.1063/1.532892
- Gawlik, E. S., Mullen, P., Pavlov, D., Marsden, J. E. & Desbrun, M. Geometric, variational discretization of continuum theories. Physica D: Nonlinear Phenomena vol. 240 1724–1760 (2011) – 10.1016/j.physd.2011.07.011
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Current and Future Directions in Applied Mathematics. (Birkhäuser Boston, 1997). doi:10.1007/978-1-4612-2012-1 – 10.1007/978-1-4612-2012-1
- Marsden, J. E. & West, M. Discrete mechanics and variational integrators. Acta Numerica vol. 10 357–514 (2001) – 10.1017/s096249290100006x
- Kane, C., Marsden, J. E., Ortiz, M. & West, M. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal for Numerical Methods in Engineering vol. 49 1295–1325 (2000) – 10.1002/1097-0207(20001210)49:10<1295::aid-nme993>3.0.co;2-w
- Wendlandt, J. M. & Marsden, J. E. Mechanical integrators derived from a discrete variational principle. Physica D: Nonlinear Phenomena vol. 106 223–246 (1997) – 10.1016/s0167-2789(97)00051-1
- Blanes, S. & Casas, F. A Concise Introduction to Geometric Numerical Integration. (2017) doi:10.1201/b21563 – 10.1201/b21563
- Loziienko, D., Salnikov, V. & Hamdouni, A. Construction of Pseudo-Geometric Integrators. Programming and Computer Software vol. 48 102–106 (2022) – 10.1134/s0361768822020074
- Gladman, B., Duncan, M. & Candy, J. Symplectic integrators for long-term integrations in celestial mechanics. Celestial Mechanics and Dynamical Astronomy vol. 52 221–240 (1991) – 10.1007/bf00048485
- Cengiz Dökmeci, M. A generalized variational theorem in elastodynamics, with application to shell theory. Meccanica vol. 8 252–260 (1973) – 10.1007/bf02342411
- Chapelle, D. & Bathe, K.-J. The Finite Element Analysis of Shells - Fundamentals. Computational Fluid and Solid Mechanics (Springer Berlin Heidelberg, 2011). doi:10.1007/978-3-642-16408-8 – 10.1007/978-3-642-16408-8
- Hu, C., Fang, X., Long, G. & Huang, W. Hamiltonian systems of propagation of elastic waves and localized vibrations in the strip plate. International Journal of Solids and Structures vol. 43 6568–6573 (2006) – 10.1016/j.ijsolstr.2006.01.011
- Lim, C. W. & Xu, X. S. Symplectic Elasticity: Theory and Applications. Applied Mechanics Reviews vol. 63 (2010) – 10.1115/1.4003700
- Elastic Wavefield Modeling by the Symplectic Discrete Singular Convolution Differentiator Method. Chinese Journal of Geophysics vol. 55 343–351 (2012) – 10.1002/cjg2.1728
- Recho, N. Hamiltonian Formalisms Applied to Continuum Mechanics: Potential Use for Fracture Mechanics. Advanced Structured Materials 19–35 (2012) doi:10.1007/978-3-642-22700-4_2 – 10.1007/978-3-642-22700-4_2
- Simo, J. C., Marsden, J. E. & Krishnaprasad, P. S. The Hamiltonian structure of nonlinear elasticity: The material and convective representations of solids, rods, and plates. Archive for Rational Mechanics and Analysis vol. 104 125–183 (1988) – 10.1007/bf00251673
- Simo, On a stress resultant geometrically exact shell models. Part VI: Conserving algorithms for nonlinear dynamics. Comput. Meth. Appl. Mech. Eng. (1992)
- Simo, J. C. & Tarnow, N. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. ZAMP Zeitschrift f�r angewandte Mathematik und Physik vol. 43 757–792 (1992) – 10.1007/bf00913408
- Simo, J. C. & Tarnow, N. A new energy and momentum conserving algorithm for the non‐linear dynamics of shells. International Journal for Numerical Methods in Engineering vol. 37 2527–2549 (1994) – 10.1002/nme.1620371503
- Yang, D., Wang, M. & Ma, X. Symplectic stereomodelling method for solving elastic wave equations in porous media. Geophysical Journal International vol. 196 560–579 (2013) – 10.1093/gji/ggt393
- Yao, W., Zhong, W. & Lim, C. W. Symplectic Elasticity. (2009) doi:10.1142/6656 – 10.1142/6656
- Leimkuhler, B. & Reich, S. Simulating Hamiltonian Dynamics. (2005) doi:10.1017/cbo9780511614118 – 10.1017/cbo9780511614118
- Qatu, M. S. Recent research advances in the dynamic behavior of shells: 1989-2000, Part 1: Laminated composite shells. Applied Mechanics Reviews vol. 55 325–350 (2002) – 10.1115/1.1483079
- Qatu, M. S. Recent research advances in the dynamic behavior of shells: 1989–2000, Part 2: Homogeneous shells. Applied Mechanics Reviews vol. 55 415–434 (2002) – 10.1115/1.1483078
- Linear Theories of Elasticity and Thermoelasticity. (Springer Berlin Heidelberg, 1973). doi:10.1007/978-3-662-39776-3 – 10.1007/978-3-662-39776-3
- Soedel, W. Vibrations of Shells and Plates. (CRC Press, 2004). doi:10.4324/9780203026304 – 10.4324/9780203026304
- On the linear theory of thin elastic shells. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences vol. 266 143–160 (1962) – 10.1098/rspa.1962.0053
- Reissner, E. A New Derivation of the Equations for the Deformation of Elastic Shells. American Journal of Mathematics vol. 63 177 (1941) – 10.2307/2371288
- Reissner, E. Stress Strain Relations in the Theory of Thin Elastic Shells. Journal of Mathematics and Physics vol. 31 109–119 (1952) – 10.1002/sapm1952311109
- Theoretical and Applied Mechanics. (Springer Berlin Heidelberg, 1973). doi:10.1007/978-3-642-65590-6 – 10.1007/978-3-642-65590-6
- Altenbach, J., Altenbach, H. & Eremeyev, V. A. On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Archive of Applied Mechanics vol. 80 73–92 (2009) – 10.1007/s00419-009-0365-3
- Rubin, M. B. Cosserat Theories: Shells, Rods and Points. Solid Mechanics and Its Applications (Springer Netherlands, 2000). doi:10.1007/978-94-015-9379-3 – 10.1007/978-94-015-9379-3
- Del Piero, G. On the method of virtual power in continuum mechanics. Journal of Mechanics of Materials and Structures vol. 4 281–292 (2009) – 10.2140/jomms.2009.4.281
- Sadowski, On the method of virtual power in the mechanics of non-classical continua. Multiscale Modelling of Complex Materials, CISM Courses and Lectures (2014)
- Mindlin, R. D. Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates. Journal of Applied Mechanics vol. 18 31–38 (1951) – 10.1115/1.4010217
- Truesdell, The linear theory of elasticity. Linear Theories of Elasticity and Thermoelasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells (1984)
- He, J. Equivalent theorem of Hellinger-Reissner and Hu-Washizu variational principles. Journal of Shanghai University (English Edition) vol. 1 36–41 (1997) – 10.1007/s11741-997-0041-1
- He, J.-H. Generalized Hellinger-Reissner Principle. Journal of Applied Mechanics vol. 67 326–331 (1998) – 10.1115/1.1303826
- Taroco, E. O., Blanco, P. J. & Feijóo, R. A. Introduction to the Variational Formulation in Mechanics. (2019) doi:10.1002/9781119600923 – 10.1002/9781119600923
- Cannarozzi, M. & Mancuso, M. Formulation and analysis of variational methods for time integration of linear elastodynamics. Computer Methods in Applied Mechanics and Engineering vol. 127 241–257 (1995) – 10.1016/0045-7825(95)00847-4
- Cannarozzi, M. & Molari, L. A mixed stress model for linear elastodynamics of arbitrarily curved beams. International Journal for Numerical Methods in Engineering vol. 74 116–137 (2007) – 10.1002/nme.2161
- Chen, G. Unconstrained variational statements for initial and boundary-value problems via the Principle of Total Virtual Action. International Journal of Engineering Science vol. 28 875–887 (1990) – 10.1016/0020-7225(90)90037-j
- Simkins, T. E. Unconstrained Variational Statements for Initial and Boundary-Value Problems. AIAA Journal vol. 16 559–563 (1978) – 10.2514/3.60934
- Charlotte, M. & Truskinovsky, L. Lattice dynamics from a continuum viewpoint. Journal of the Mechanics and Physics of Solids vol. 60 1508–1544 (2012) – 10.1016/j.jmps.2012.03.004
- Charlotte, M. An atomistically-meaningful pseudocontinuum representation for the finite monatomic chain with harmonic nearest-neighbor interactions. International Journal of Solids and Structures vols 97–98 209–225 (2016) – 10.1016/j.ijsolstr.2016.07.027
- Reissner, E. Some aspects of the variational principles problem in elasticity. Computational Mechanics vol. 1 3–9 (1986) – 10.1007/bf00298634
- Alvarado, A mixed stress/displacement approach model of homogeneous shells for Elastodynamic problems. Math. Probl. Eng. (2020)
- LIANG, L. Non-contemporaneous variations and H�lder?s principle. Science in China Series G vol. 46 449 (2003) – 10.1360/02yw0121
- Mechanical Systems, Classical Models. Mathematical and Analytical Techniques With Applications to Engineering (Springer Netherlands, 2009). doi:10.1007/978-1-4020-8988-6 – 10.1007/978-1-4020-8988-6
- Bailey, C. D. Application of Hamilton’s law to forced, damped, stationary systems. Journal of Sound and Vibration vol. 75 117–126 (1981) – 10.1016/0022-460x(81)90239-x
- Tabarrok, B. Complementary variational principles in elastodynamics. Computers & Structures vol. 19 239–246 (1984) – 10.1016/0045-7949(84)90223-2
- Fetecau, R. C., Marsden, J. E., Ortiz, M. & West, M. Nonsmooth Lagrangian Mechanics and Variational Collision Integrators. SIAM Journal on Applied Dynamical Systems vol. 2 381–416 (2003) – 10.1137/s1111111102406038
- Capriz, G. & Mariano, P. M. Symmetries and Poisson Structures for Complex Materials. Journal of the Mechanical Behavior of Materials vol. 18 89–96 (2007) – 10.1515/jmbm.2007.18.2.89
- Podio-Guidugli, P. A virtual power format for thermomechanics. Continuum Mechanics and Thermodynamics vol. 20 479–487 (2009) – 10.1007/s00161-009-0093-5
- Green, A. E. & Naghdi, P. M. Thermoelasticity without energy dissipation. Journal of Elasticity vol. 31 189–208 (1993) – 10.1007/bf00044969
- Kim, J., Dargush, G. F. & Ju, Y.-K. Extended framework of Hamilton’s principle for continuum dynamics. International Journal of Solids and Structures vol. 50 3418–3429 (2013) – 10.1016/j.ijsolstr.2013.06.015
- Apostolakis, G. & Dargush, G. F. Mixed Lagrangian Formulation for Linear Thermoelastic Response of Structures. Journal of Engineering Mechanics vol. 138 508–518 (2012) – 10.1061/(asce)em.1943-7889.0000346
- Apostolakis, G. & Dargush, G. F. Variational methods in irreversible thermoelasticity: theoretical developments and minimum principles for the discrete form. Acta Mechanica vol. 224 2065–2088 (2013) – 10.1007/s00707-013-0843-0
- Altay, G. & Cengiz Dökmeci, M. Fluid–fluid and –solid interaction problems: Variational principles revisited. International Journal of Engineering Science vol. 47 83–102 (2009) – 10.1016/j.ijengsci.2008.07.006
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Dah-wei, H. Generalized variational principles on nonlinear theory of elasticity with finite displacements. Applied Mathematics and Mechanics vol. 12 227–236 (1991) – 10.1007/bf02098052
- Felippa, C. A. The Extended Free Formulation of Finite Elements in Linear Elasticity. Journal of Applied Mechanics vol. 56 609–616 (1989) – 10.1115/1.3176135
- Hughes, T. J. R., Hilber, H. M. & Taylor, R. L. A reduction scheme for problems of structural dynamics. International Journal of Solids and Structures vol. 12 749–767 (1976) – 10.1016/0020-7683(76)90040-8
- Liang, L. Deriving generalized variational principles in general mechanics by using Lagrangian multiplier method. Science in China Series A: Mathematics vol. 42 1332–1339 (1999) – 10.1007/bf02876035
- Liang, Generalized variational principles of three kinds of variables in general mechanics. Sci. China Ser. A-Math. Phys. Astron. (2001)
- En, L. & Cheung, Y. K. On the variational principles in linear elastodynamics. Acta Mechanica Sinica vol. 4 337–349 (1988) – 10.1007/bf02486667
- Quadrelli, M. B. & Atluri, S. N. Mixed variational principles in space and time for elastodynamics analysis. Acta Mechanica vol. 136 193–208 (1999) – 10.1007/bf01179257
- Tchonkova, M. & Sture, S. Classical and recent formulations for linear elasticity. Archives of Computational Methods in Engineering vol. 8 41–74 (2001) – 10.1007/bf02736684
- Wei-zang, C. Variational principles and generalized variational principles for nonlinear elasticity with finite displacement. Applied Mathematics and Mechanics vol. 9 1–12 (1988) – 10.1007/bf02017881
- Derivation of non-classical variational principles in the theory of elasticity. Apl. Mat. (1967)
- Deng, G. & Dargush, G. F. Mixed Lagrangian formulation for size-dependent couple stress elastodynamic response. Acta Mechanica vol. 227 3451–3473 (2016) – 10.1007/s00707-016-1644-z
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Brugnoli, A., Haine, G., Serhani, A. & Vasseur, X. Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control. Journal of Applied Mathematics and Physics vol. 09 1278–1321 (2021) – 10.4236/jamp.2021.96088
- Haine, Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled N-dimensional wave equation as a port-Hamiltonian system. Int. J. Numer. Anal. Mod. (2023)
- Argyris, Finite elements in time and space. Aeronaut. J. R. Aeronaut. Soc. (1969)
- Tamma, K. K., Har, J., Zhou, X., Shimada, M. & Hoitink, A. An Overview and Recent Advances in Vector and Scalar Formalisms: Space/Time Discretizations in Computational Dynamics—A Unified Approach. Archives of Computational Methods in Engineering vol. 18 119–283 (2011) – 10.1007/s11831-011-9060-y
- Hughes, T. J. R. & Hulbert, G. M. Space-time finite element methods for elastodynamics: Formulations and error estimates. Computer Methods in Applied Mechanics and Engineering vol. 66 339–363 (1988) – 10.1016/0045-7825(88)90006-0
- de Miranda, S., Molari, L. & Ubertini, F. A consistent approach for mixed stress finite element formulations in linear elastodynamics. Computer Methods in Applied Mechanics and Engineering vol. 197 1376–1388 (2008) – 10.1016/j.cma.2007.11.007
- Kim, J. Extended framework of Hamilton’s principle for thermoelastic continua. Computers & Mathematics with Applications vol. 73 1505–1523 (2017) – 10.1016/j.camwa.2017.01.021
- Pietraszkiewicz, W. The resultant linear six‐field theory of elastic shells: What it brings to the classical linear shell models? ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik vol. 96 899–915 (2015) – 10.1002/zamm.201500184