A Port-Hamiltonian formulation of linear thermoelasticity and its mixed finite element discretization
Authors
A. Brugnoli, D. Alazard, V. Pommier-Budinger, D. Matignon
Abstract
A port-Hamiltonian formulation for general linear coupled thermoelasticity and for the thermoelastic bending of thin structures is presented. The construction exploits the intrinsic modularity of port-Hamiltonian systems to obtain a formulation of linear thermoelasticity as an interconnection of the elastodynamics and heat equations. The derived model can be readily discretized by using mixed finite elements. The discretization is structure-preserving, since the main features of the system are retained at a discrete level. The proposed model and discretization strategy are validated against a benchmark problem of thermoelasticity, the Danilovskaya problem.
Citation
- Journal: Journal of Thermal Stresses
- Year: 2021
- Volume: 44
- Issue: 6
- Pages: 643–661
- Publisher: Informa UK Limited
- DOI: 10.1080/01495739.2021.1917322
BibTeX
@article{Brugnoli_2021,
title={{A Port-Hamiltonian formulation of linear thermoelasticity and its mixed finite element discretization}},
volume={44},
ISSN={1521-074X},
DOI={10.1080/01495739.2021.1917322},
number={6},
journal={Journal of Thermal Stresses},
publisher={Informa UK Limited},
author={Brugnoli, A. and Alazard, D. and Pommier-Budinger, V. and Matignon, D.},
year={2021},
pages={643--661}
}
References
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Kotyczka P., 23rd MTNS (2018)
- Kotyczka P., Numerical Methods for Distributed Parameter Port-Hamiltonian Systems (2019)
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Port-Hamiltonian model of two-dimensional shallow water equations in moving containers. IMA Journal of Mathematical Control and Information vol. 37 1348–1366 (2020) – 10.1093/imamci/dnaa016
- DOI not foun – 10.1016/j.geomphys. 2021.104201
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow. Journal of Geometry and Physics vol. 164 104199 (2021) – 10.1016/j.geomphys.2021.104199
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Kirby, R. C. & Kieu, T. T. Symplectic-mixed finite element approximation of linear acoustic wave equations. Numerische Mathematik vol. 130 257–291 (2014) – 10.1007/s00211-014-0667-4
- Avalos, G. & Lasiecka, I. Boundary Controllability of Thermoelastic Plates via the Free Boundary Conditions. SIAM Journal on Control and Optimization vol. 38 337–383 (2000) – 10.1137/s0363012998339836
- Hansen, S. W. & Zhang, B.-Y. Boundary Control of a Linear Thermoelastic Beam. Journal of Mathematical Analysis and Applications vol. 210 182–205 (1997) – 10.1006/jmaa.1997.5437
- Biot, M. A. Thermoelasticity and Irreversible Thermodynamics. Journal of Applied Physics vol. 27 240–253 (1956) – 10.1063/1.1722351
- DOI not foun – [10.1007/978-3-662-39776-3](https://doi.org/10.1007/978-3-662-39776-3)
- Hetnarski R. B., Thermal Stresses: Advanced Theory and Applications (2009)
- Abeyaratne R., Lecture Notes on the Mechanics of Elastic Solids. Volume II: Continuum Mechanics (2012)
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- 2019 IEEE 58th Conference on Decision and Control (CDC). (2019) doi:10.1109/cdc40024.2019 – 10.1109/cdc40024.2019
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine vol. 52 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Chadwick, P. On the propagation of thermoelastic disturbances in thin plates and rods. Journal of the Mechanics and Physics of Solids vol. 10 99–109 (1962) – 10.1016/0022-5096(62)90013-3
- Lifshitz, R. & Roukes, M. L. Thermoelastic damping in micro- and nanomechanical systems. Physical Review B vol. 61 5600–5609 (2000) – 10.1103/physrevb.61.5600
- Lagnese, J. E. Boundary Stabilization of Thin Plates. (1989) doi:10.1137/1.9781611970821 – 10.1137/1.9781611970821
- Simmonds, J. G. Major simplifications in a current linear model for the motion of a thermoelastic plate. Quarterly of Applied Mathematics vol. 57 673–679 (1999) – 10.1090/qam/1724299
- Norris, A. N. Dynamics of thermoelastic Thin Plates: A Comparison of Four Theories. Journal of Thermal Stresses vol. 29 169–195 (2006) – 10.1080/01495730500257482
- Cohen, G. & Fauqueux, S. Mixed Spectral Finite Elements for the Linear Elasticity System in Unbounded Domains. SIAM Journal on Scientific Computing vol. 26 864–884 (2005) – 10.1137/s1064827502407457
- Weng, Z., Feng, X. & Huang, P. A new mixed finite element method based on the Crank–Nicolson scheme for the parabolic problems. Applied Mathematical Modelling vol. 36 5068–5079 (2012) – 10.1016/j.apm.2011.12.044
- Arnold, D. N. & Lee, J. J. Mixed Methods for Elastodynamics with Weak Symmetry. SIAM Journal on Numerical Analysis vol. 52 2743–2769 (2014) – 10.1137/13095032x
- Memon, S., Nataraj, N. & Pani, A. K. An A Posteriori Error Analysis of Mixed Finite Element Galerkin Approximations to Second Order Linear Parabolic Problems. SIAM Journal on Numerical Analysis vol. 50 1367–1393 (2012) – 10.1137/100782760
- Danilovskaya V. I., Prikladnaya Matematika i Mech. (1950)
- Balla, M. Analytical study of the thermal shock problem of a half-space with various thermoelastic models. Acta Mechanica vol. 89 73–92 (1991) – 10.1007/bf01171248
- Rabizadeh, E., Saboor Bagherzadeh, A. & Rabczuk, T. Goal-oriented error estimation and adaptive mesh refinement in dynamic coupled thermoelasticity. Computers & Structures vol. 173 187–211 (2016) – 10.1016/j.compstruc.2016.05.024
- Rathgeber, F. et al. Firedrake. ACM Transactions on Mathematical Software vol. 43 1–27 (2016) – 10.1145/2998441
- de Hoog, F. R., Knight, J. H. & Stokes, A. N. An Improved Method for Numerical Inversion of Laplace Transforms. SIAM Journal on Scientific and Statistical Computing vol. 3 357–366 (1982) – 10.1137/0903022