An Improvement of Port-Hamiltonian Model of Fluid Sloshing Coupled by Structure Motion
Authors
Mohammad Yaghoub Abdollahzadeh Jamalabadi
Abstract
The fluid–solid interaction is an interesting topic in numerous engineering applications. In this paper, the fluid–solid interaction is considered in a vessel attached to the free tip of a cantilever beam. Governing coupled equations of the system include the Euler–Bernoulli equation for bending of a beam, torsion of a beam, 2-D motion of the rigid vessel, and rotating shallow water equation of fluid sloshing in the vessel. As an essential portion in the numerical simulation of the vibration control of this fluid–plate system is the accurate modeling of sloshing; the partial differential equations of the system are modified by approximation of velocity profile. The suggested method is validated by experimental results of a piezoelectric actuated clamped rectangular plate holding a cylindrical vessel. These sloshing interactions with elastic test cases illustrate the mass conservative characteristics of the method as well as its stability in a prompt change of the vessel situations.
Citation
- Journal: Water
- Year: 2018
- Volume: 10
- Issue: 12
- Pages: 1721
- Publisher: MDPI AG
- DOI: 10.3390/w10121721
BibTeX
@article{Abdollahzadeh_Jamalabadi_2018,
title={{An Improvement of Port-Hamiltonian Model of Fluid Sloshing Coupled by Structure Motion}},
volume={10},
ISSN={2073-4441},
DOI={10.3390/w10121721},
number={12},
journal={Water},
publisher={MDPI AG},
author={Abdollahzadeh Jamalabadi, Mohammad Yaghoub},
year={2018},
pages={1721}
}
References
- Molin, B. & Remy, F. Experimental and numerical study of the sloshing motion in a rectangular tank with a perforated screen. Journal of Fluids and Structures vol. 43 463–480 (2013) – 10.1016/j.jfluidstructs.2013.10.001
- Nicolici, S. & Bilegan, R. M. Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks. Nuclear Engineering and Design vol. 258 51–56 (2013) – 10.1016/j.nucengdes.2012.12.024
- Shadloo, M. S., Oger, G. & Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Computers & Fluids vol. 136 11–34 (2016) – 10.1016/j.compfluid.2016.05.029
- Zhang, Z., Qiang, H. & Gao, W. Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Engineering Structures vol. 33 255–264 (2011) – 10.1016/j.engstruct.2010.10.020
- Chen, B.-F. & Nokes, R. Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank. Journal of Computational Physics vol. 209 47–81 (2005) – 10.1016/j.jcp.2005.03.006
- Koutandos, E., Prinos, P. & Gironella, X. Floating breakwaters under regular and irregular wave forcing: reflection and transmission characteristics. Journal of Hydraulic Research vol. 43 174–188 (2005) – 10.1080/00221686.2005.9641234
- Wei, Z.-J., Faltinsen, O. M., Lugni, C. & Yue, Q.-J. Sloshing-induced slamming in screen-equipped rectangular tanks in shallow-water conditions. Physics of Fluids vol. 27 (2015) – 10.1063/1.4913983
- Monaghan, J. J. Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics vol. 30 543–574 (1992) – 10.1146/annurev.aa.30.090192.002551
- Fatehi, R., Shadloo, M. S. & Manzari, M. T. Numerical investigation of two-phase secondary Kelvin–Helmholtz instability. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science vol. 228 1913–1924 (2013) – 10.1177/0954406213512630
- Benson, D. J. Computational methods in Lagrangian and Eulerian hydrocodes. Computer Methods in Applied Mechanics and Engineering vol. 99 235–394 (1992) – 10.1016/0045-7825(92)90042-i
- Rahmat, A., Tofighi, N., Shadloo, M. S. & Yildiz, M. Numerical simulation of wall bounded and electrically excited Rayleigh–Taylor instability using incompressible smoothed particle hydrodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects vol. 460 60–70 (2014) – 10.1016/j.colsurfa.2014.02.044
- Monaghan, J. J. Smoothed particle hydrodynamics. Reports on Progress in Physics vol. 68 1703–1759 (2005) – 10.1088/0034-4885/68/8/r01
- Libersky, L.D., and Petschek, A.G. (1990, January 3–7). Smooth Particle Hydrodynamics with Strength of Materials. Proceedings of the Next Free-Lagrange Conference, Moran, WY, USA.
- Benz, W. & Asphaug, E. Simulations of brittle solids using smooth particle hydrodynamics. Computer Physics Communications vol. 87 253–265 (1995) – 10.1016/0010-4655(94)00176-3
- Monaghan, J. J. SPH without a Tensile Instability. Journal of Computational Physics vol. 159 290–311 (2000) – 10.1006/jcph.2000.6439
- Libersky, L. D., Randles, P. W., Carney, T. C. & Dickinson, D. L. Recent improvements in SPH modeling of hypervelocity impact. International Journal of Impact Engineering vol. 20 525–532 (1997) – 10.1016/s0734-743x(97)87441-6
- Johnson, G. R., Stryk, R. A. & Beissel, S. R. SPH for high velocity impact computations. Computer Methods in Applied Mechanics and Engineering vol. 139 347–373 (1996) – 10.1016/s0045-7825(96)01089-4
- Johnson, G. R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nuclear Engineering and Design vol. 150 265–274 (1994) – 10.1016/0029-5493(94)90143-0
- Attaway, S. W., Heinstein, M. W. & Swegle, J. W. Coupling of smooth particle hydrodynamics with the finite element method. Nuclear Engineering and Design vol. 150 199–205 (1994) – 10.1016/0029-5493(94)90136-8
- Fernández-Méndez, S., Bonet, J. & Huerta, A. Continuous blending of SPH with finite elements. Computers & Structures vol. 83 1448–1458 (2005) – 10.1016/j.compstruc.2004.10.019
- Yu, Y.-M., Ma, N., Fan, S.-M. & Gu, X.-C. Experimental and numerical studies on sloshing in a membrane-type LNG tank with two floating plates. Ocean Engineering vol. 129 217–227 (2017) – 10.1016/j.oceaneng.2016.11.029
- Kotyczka, P. & Maschke, B. Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws. at - Automatisierungstechnik vol. 65 308–322 (2017) – 10.1515/auto-2016-0098
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Ibrahim, R. A. Liquid Sloshing Dynamics. (2005) doi:10.1017/cbo9780511536656 – 10.1017/cbo9780511536656
- Lasiecka, I. & Tuffaha, A. Boundary feedback control in Fluid-Structure Interactions. 2008 47th IEEE Conference on Decision and Control 203–208 (2008) doi:10.1109/cdc.2008.4738966 – 10.1109/cdc.2008.4738966
- Petit, N. & Rouchon, P. Dynamics and solutions to some control problems for water-tank systems. IEEE Transactions on Automatic Control vol. 47 594–609 (2002) – 10.1109/9.995037
- Pommier-Budinger, V., Richelot, J., and Bordeneuve-Guib, J. (2006, January 9–11). Active control of a structure with sloshing phenomena. Proceedings of the IFAC Conference on Mechatronic Systems, Berkeley, CA, USA.
- Coron, J.-M. Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations. ESAIM: Control, Optimisation and Calculus of Variations vol. 8 513–554 (2002) – 10.1051/cocv:2002050
- Prieur, C. & de Halleux, J. Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations. Systems & Control Letters vol. 52 167–178 (2004) – 10.1016/j.sysconle.2003.11.008
- Robu, B. (2010). Active Vibration Control of a Fluid/Plate System. [Ph.D. Thesis, University of Toulouse].
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Robu, B., Baudouin, L., Prieur, C. & Arzelier, D. Simultaneous $H_\infty$ Vibration Control of Fluid/Plate System via Reduced-Order Controller. IEEE Transactions on Control Systems Technology vol. 20 700–711 (2012) – 10.1109/tcst.2011.2144984
- Cardoso-Ribeiro, F. L., Pommier-Budinger, V., Schotte, J.-S. & Arzelier, D. Modeling of a coupled fluid-structure system excited by piezoelectric actuators. 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 216–221 (2014) doi:10.1109/aim.2014.6878081 – 10.1109/aim.2014.6878081
- Cardoso-Ribeiro, F.L., Matignon, D., and Pommier-Budinger, V. (2015, January 13–15). Control design for a coupled fluid-structure system with piezoelectric actuators. Proceedings of the 3rd CEAS EuroGNC, Toulouse, France.
- ALEMI ARDAKANI, H. & BRIDGES, T. J. Dynamic coupling between shallow-water sloshing and horizontal vehicle motion. European Journal of Applied Mathematics vol. 21 479–517 (2010) – 10.1017/s0956792510000197
- ARDAKANI, H. A. & BRIDGES, T. J. Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in three dimensions. Journal of Fluid Mechanics vol. 667 474–519 (2011) – 10.1017/s0022112010004477
- Hamroun, B., Lefevre, L. & Mendes, E. Port-based modelling and geometric reduction for open channel irrigation systems. 2007 46th IEEE Conference on Decision and Control 1578–1583 (2007) doi:10.1109/cdc.2007.4434237 – 10.1109/cdc.2007.4434237
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control vol. 16 545–563 (2010) – 10.3166/ejc.16.545-563