Port Hamiltonian formulation of the solidification process for a pure substance: A phase field approach
Authors
Mohammed Yaghi, Françoise Couenne, Aurélie Galfré, Laurent Lefèvre, Bernhard Maschke
Abstract
In this paper we suggest a Port Hamiltonian model of the solidification process of water, using the phase field approach. Firstly, the Port Hamiltonian formulation of the dynamics of the phase field variable, governed by the Allen-Cahn equation, is recalled. It is based on adding to the phase field variable, its gradient, and extending the system with its dynamics. Secondly, the model is completed by the energy balance equation for the heat conduction and the complete Port Hamiltonian model is derived. Thirdly an Algebro-differential Port Hamiltonian representation is suggested, where the Port Hamiltonian system is defined on a Lagrangian submanifold, allowing to use directly the variables defining the thermodynamical data.
Keywords
Port Hamiltonian systems on Lagrange subspaces; Phase Field; Diffuse interface; Solidification process; Thermodynamical properties
Citation
- Journal: IFAC-PapersOnLine
- Year: 2022
- Volume: 55
- Issue: 18
- Pages: 93–98
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2022.08.036
- Note: 4th IFAC Workshop on Thermodynamics Foundations of Mathematical Systems Theory TFMST 2022- Montreal, Canada, 25–27 July 2022
BibTeX
@article{Yaghi_2022,
title={{Port Hamiltonian formulation of the solidification process for a pure substance: A phase field approach*}},
volume={55},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2022.08.036},
number={18},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Yaghi, Mohammed and Couenne, Françoise and Galfré, Aurélie and Lefèvre, Laurent and Maschke, Bernhard},
year={2022},
pages={93--98}
}
References
- Bendimerad-Hohl, A., Haine, G., Matignon, D. & Maschke, B. Structure-preserving discretization of a coupled Allen-Cahn and heat equation system. IFAC-PapersOnLine vol. 55 99–104 (2022) – 10.1016/j.ifacol.2022.08.037
- Boettinger, W. J., Warren, J. A., Beckermann, C. & Karma, A. Phase-Field Simulation of Solidification. Annual Review of Materials Research vol. 32 163–194 (2002) – 10.1146/annurev.matsci.32.101901.155803
- Callen, (1991)
- Diagne, M. & Maschke, B. Port Hamiltonian formulation of a system of two conservation laws with a moving interface. European Journal of Control vol. 19 495–504 (2013) – 10.1016/j.ejcon.2013.09.001
- Duindam, (2009)
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Physica D: Nonlinear Phenomena vol. 63 410–423 (1993) – 10.1016/0167-2789(93)90120-p
- Kurula, (2012)
- Maschke, B. & Schaft, A. van der. Linear Boundary Port Hamiltonian Systems defined on Lagrangian submanifolds. IFAC-PapersOnLine vol. 53 7734–7739 (2020) – 10.1016/j.ifacol.2020.12.1526
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- van der Schaft, A. & Maschke, B. Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems. Vietnam Journal of Mathematics vol. 48 929–939 (2020) – 10.1007/s10013-020-00419-x
- van der Schaft, A. & Maschke, B. Differential operator Dirac structures. IFAC-PapersOnLine vol. 54 198–203 (2021) – 10.1016/j.ifacol.2021.11.078
- Vincent, B., Couenne, F., Lefèvre, L. & Maschke, B. Port Hamiltonian systems with moving interface: a phase field approach. IFAC-PapersOnLine vol. 53 7569–7574 (2020) – 10.1016/j.ifacol.2020.12.1353
- Wang, S.-L. et al. Thermodynamically-consistent phase-field models for solidification. Physica D: Nonlinear Phenomena vol. 69 189–200 (1993) – 10.1016/0167-2789(93)90189-8
- Yen, (1981)
- Yin, Y. et al. Progressive freezing and suspension crystallization methods for tetrahydrofuran recovery from Grignard reagent wastewater. Journal of Cleaner Production vol. 144 180–186 (2017) – 10.1016/j.jclepro.2017.01.012