Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis
Authors
Abstract
Analysis of longitudinal vibration in a nanorod is an important subject in science and engineering due to its vast application in nanotechnology. This paper introduces a port-Hamiltonian formulation for the longitudinal vibrations in a nanorod, which shows that this model is essentially hyperbolic. Furthermore, it investigates the spectral properties of the associated system operator. Standard distributed control and feedback are shown not to be controllable nor stabilizing.
Citation
- Journal: Mathematical Modelling of Natural Phenomena
- Year: 2022
- Volume: 17
- Issue:
- Pages: 24
- Publisher: EDP Sciences
- DOI: 10.1051/mmnp/2022028
BibTeX
@article{Heidari_2022,
title={{Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis}},
volume={17},
ISSN={1760-6101},
DOI={10.1051/mmnp/2022028},
journal={Mathematical Modelling of Natural Phenomena},
publisher={EDP Sciences},
author={Heidari, Hanif and Zwart, Hans},
editor={Volpert, Vitaly},
year={2022},
pages={24}
}
References
- Akbas, Adv Nano Res (2020)
- Akbaş, Ş. D. Forced vibration analysis of cracked nanobeams. Journal of the Brazilian Society of Mechanical Sciences and Engineering vol. 40 (2018) – 10.1007/s40430-018-1315-1
- Akbas, J. Comput. Appl. Mech (2019)
- Alasvand Hadi, Comp. M. Diff. Eq (2021)
- Ali, S. B., Oshido, A. B., Houlton, A. & Horrocks, B. R. Models for sensing by nanowire networks: application to organic vapour detection by multiwall carbon nanotube—DNA films. Nanotechnology vol. 33 045502 (2021) – 10.1088/1361-6528/ac2e20
- Curtain, R. & Zwart, H. Classes of Semigroups. Texts in Applied Mathematics 71–150 (2020) doi:10.1007/978-1-0716-0590-5_3 – 10.1007/978-1-0716-0590-5_3
- Eren, Adv. Nano Res (2018)
- Golo, G., van der Schaft, A. & Stramigioli, S. Hamiltonian Formulation of Planar Beams. IFAC Proceedings Volumes vol. 36 147–152 (2003) – 10.1016/s1474-6670(17)38882-1
- Heidari, H. DYNAMICAL ANALYSIS OF AN AXIALLY VIBRATING NANOROD. International Journal of Apllied Mathematics vol. 29 (2016) – 10.12732/ijam.v29i2.9
- Heidari, H. & Zwart, H. Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod. Mathematical and Computer Modelling of Dynamical Systems vol. 25 447–462 (2019) – 10.1080/13873954.2019.1659374
- Inguva, S., Vijayaraghavan, R. K., McGlynn, E. & Mosnier, J.-P. High quality interconnected core/shell ZnO nanorod architectures grown by pulsed laser deposition on ZnO-seeded Si substrates. Superlattices and Microstructures vol. 101 8–14 (2017) – 10.1016/j.spmi.2016.11.031
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Karličić, D., Cajić, M., Murmu, T. & Adhikari, S. Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems. European Journal of Mechanics - A/Solids vol. 49 183–196 (2015) – 10.1016/j.euromechsol.2014.07.005
- Kozlovskiy, A. L. et al. Comprehensive Study of Ni Nanotubes for Bioapplications: From Synthesis to Payloads Attaching. Journal of Nanomaterials vol. 2017 1–9 (2017) – 10.1155/2017/3060972
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Liu, Sci. Rep (2014)
- Macchelli, Proc. IEEE Conf. Decis. Control (2004)
- Murmu, T. & Adhikari, S. Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E: Low-dimensional Systems and Nanostructures vol. 43 415–422 (2010) – 10.1016/j.physe.2010.08.023
- Numanoğlu, H. M., Akgöz, B. & Civalek, Ö. On dynamic analysis of nanorods. International Journal of Engineering Science vol. 130 33–50 (2018) – 10.1016/j.ijengsci.2018.05.001
- Popov, V. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports vol. 43 61–102 (2004) – 10.1016/j.mser.2003.10.001
- PUGNO, N. The role of defects in the design of space elevator cable: From nanotube to megatube. Acta Materialia vol. 55 5269–5279 (2007) – 10.1016/j.actamat.2007.05.052
- Rafique, S., Han, L. & Zhao, H. Growth and Electrical Properties of Free-Standing Zinc Oxide Nanomembranes. Crystal Growth & Design vol. 16 1654–1661 (2016) – 10.1021/acs.cgd.5b01738
- Raunika, A., Raj, S. A., Jayakrishna, K. & Sultan, M. T. H. Carbon nanotube: A review on its mechanical properties and application in aerospace industry. IOP Conference Series: Materials Science and Engineering vol. 270 012027 (2017) – 10.1088/1757-899x/270/1/012027
- Salazar, A. et al. Potential Use of Nitrogen-Doped Carbon Nanotube Sponges as Payload Carriers Against Malignant Glioma. Nanomaterials vol. 11 1244 (2021) – 10.3390/nano11051244
- Salvetat-Delmotte, J.-P. & Rubio, A. Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon vol. 40 1729–1734 (2002) – 10.1016/s0008-6223(02)00012-x
- Şimşek, M. Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. International Journal of Engineering Science vol. 105 12–27 (2016) – 10.1016/j.ijengsci.2016.04.013
- Trenchant, IFAC (2015)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Voß, T. & Scherpen, J. M. A. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation. SIAM Journal on Control and Optimization vol. 52 493–519 (2014) – 10.1137/090774598
- Wang, K. & Wang, B. Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy. Journal of Vibration and Control vol. 21 2452–2464 (2013) – 10.1177/1077546313513054
- Yoon, J., Ru, C. Q. & Mioduchowski, A. Terahertz Vibration of Short Carbon Nanotubes Modeled as Timoshenko Beams. Journal of Applied Mechanics vol. 72 10–17 (2005) – 10.1115/1.1795814