A port-hamiltonian finite-element formulation for the maxwell equations
Authors
O. Farle, D. Klis, M. Jochum, O. Floch, R. Dyczij-Edlinger
Abstract
A new port-Hamiltonian formulation for Maxwell’s equations is presented. In contrast to previous approaches for distributed-parameter systems, it is directly applicable to the finite-element method. For this purpose, the dual complex has been eliminated from the underlying Dirac structure. The discretization step preserves the port-Hamiltonian structure and important conservation laws.
Citation
- Journal: 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA)
- Year: 2013
- Volume:
- Issue:
- Pages: 324–327
- Publisher: IEEE
- DOI: 10.1109/iceaa.2013.6632246
BibTeX
@inproceedings{Farle_2013,
title={{A port-hamiltonian finite-element formulation for the maxwell equations}},
DOI={10.1109/iceaa.2013.6632246},
booktitle={{2013 International Conference on Electromagnetics in Advanced Applications (ICEAA)}},
publisher={IEEE},
author={Farle, O. and Klis, D. and Jochum, M. and Floch, O. and Dyczij-Edlinger, R.},
year={2013},
pages={324--327}
}
References
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Rohrer, R. & Nosrati, H. Passivity considerations in stability studies of numerical integration algorithms. IEEE Transactions on Circuits and Systems vol. 28 857–866 (1981) – 10.1109/tcs.1981.1085061
- Brogliato, B., Maschke, B., Lozano, R. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2007). doi:10.1007/978-1-84628-517-2 – 10.1007/978-1-84628-517-2
- Teixeira, F. L. & Chew, W. C. Lattice electromagnetic theory from a topological viewpoint. Journal of Mathematical Physics vol. 40 169–187 (1999) – 10.1063/1.532767
- Multidomain modeling of nonlinear networks and systems. IEEE Control Systems vol. 29 28–59 (2009) – 10.1109/mcs.2009.932927
- Yu Zhu & Cangellaris, A. C. A new finite element model for reduced order electromagnetic modeling. IEEE Microwave and Wireless Components Letters vol. 11 211–213 (2001) – 10.1109/7260.923031
- Bossavit, A. Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach. Handbook of Numerical Analysis 105–197 (2005) doi:10.1016/s1570-8659(04)13002-0 – 10.1016/s1570-8659(04)13002-0
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Arnold, D., Falk, R. & Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society vol. 47 281–354 (2010) – 10.1090/s0273-0979-10-01278-4
- Bond-graph modeling. IEEE Control Systems vol. 27 24–45 (2007) – 10.1109/mcs.2007.338279
- pozar, Microwave Engineering (2004)