Dirac structures and their composition on Hilbert spaces
Authors
Mikael Kurula, Hans Zwart, Arjan van der Schaft, Jussi Behrndt
Abstract
Dirac structures appear naturally in the study of certain classes of physical models described by partial differential equations and they can be regarded as the underlying power conserving structures. We study these structures and their properties from an operator-theoretic point of view. In particular, we find necessary and sufficient conditions for the composition of two Dirac structures to be a Dirac structure and we show that they can be seen as Lagrangian (hyper-maximal neutral) subspaces of Kreĭn spaces. Moreover, special emphasis is laid on Dirac structures associated with operator colligations. It turns out that this class of Dirac structures is linked to boundary triplets and that this class is closed under composition.
Keywords
Dirac structure; Composition; Boundary triplet; Boundary colligation; Impedance conservative; Kreĭn space
Citation
- Journal: Journal of Mathematical Analysis and Applications
- Year: 2010
- Volume: 372
- Issue: 2
- Pages: 402–422
- Publisher: Elsevier BV
- DOI: 10.1016/j.jmaa.2010.07.004
BibTeX
@article{Kurula_2010,
title={{Dirac structures and their composition on Hilbert spaces}},
volume={372},
ISSN={0022-247X},
DOI={10.1016/j.jmaa.2010.07.004},
number={2},
journal={Journal of Mathematical Analysis and Applications},
publisher={Elsevier BV},
author={Kurula, Mikael and Zwart, Hans and van der Schaft, Arjan and Behrndt, Jussi},
year={2010},
pages={402--422}
}
References
- Azizov, Linear Operators in Spaces with an Indefinite Metric. (1989)
- Ball, J. A. & Staffans, O. J. Conservative State-Space Realizations of Dissipative System Behaviors. Integr. equ. oper. theory 54, 151–213 (2005) – 10.1007/s00020-003-1356-3
- Behrndt, J. & Langer, M. Boundary value problems for elliptic partial differential operators on bounded domains. Journal of Functional Analysis 243, 536–565 (2007) – 10.1016/j.jfa.2006.10.009
- Bognár, Indefinite Inner Product Spaces. (1974)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Derkach, V., Hassi, S., Malamud, M. & de Snoo, H. Boundary relations and their Weyl families. Trans. Amer. Math. Soc. 358, 5351–5401 (2006) – 10.1090/s0002-9947-06-04033-5
- Derkach, V., Hassi, S., Malamud, M. & de Snoo, H. Boundary relations and generalized resolvents of symmetric operators. Russ. J. Math. Phys. 16, 17–60 (2009) – 10.1134/s1061920809010026
- Derkach, V. A. & Malamud, M. M. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. Journal of Functional Analysis 95, 1–95 (1991) – 10.1016/0022-1236(91)90024-y
- Derkach, V. A. & Malamud, M. M. The extension theory of Hermitian operators and the moment problem. J Math Sci 73, 141–242 (1995) – 10.1007/bf02367240
- Dorfman, Dirac structures and integrability of nonlinear evolution equations. (1993)
- Godlewski, Numerical Approximation of Hyperbolic Systems of Conservation Laws. (1996)
- Gorbachuk, Boundary Value Problems for Operator Differential Equations. (1991)
- Kato, T. Perturbation Theory for Linear Operators. Classics in Mathematics (Springer Berlin Heidelberg, 1995). doi:10.1007/978-3-642-66282-9 – 10.1007/978-3-642-66282-9
- Kurula, M. On Passive and Conservative State/Signal Systems. Integr. Equ. Oper. Theory 67, 377–424 (2010) – 10.1007/s00020-010-1787-6
- Kurula, M. & Staffans, O. J. Well-Posed State/Signal Systems in Continuous Time. Complex Anal. Oper. Theory 4, 319–390 (2009) – 10.1007/s11785-009-0021-5
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Malinen, J. & Staffans, O. J. Impedance Passive and Conservative Boundary Control Systems. Complex anal.oper.theory 1, 279–300 (2007) – 10.1007/s11785-006-0009-3
- Pazy, (1983)
- Redheffer, R. M. On a Certain Linear Fractional Transformation. Journal of Mathematics and Physics 39, 269–286 (1960) – 10.1002/sapm1960391269
- Šmul’jan, Theory of linear relations, and spaces with indefinite metric. Funkcional. Anal. i Priložen. (1976)
- Staffans, Passive linear discrete time-invariant systems. (2006)
- van der Schaft, Interconnection and geometry. (1999)
- van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control. (2000)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Zhou, (1996)