Canonical interconnection of discrete linear port-Hamiltonian systems
Authors
Said Aoues, Damien Eberard, Wilfrid Marquis-Favre
Abstract
This paper deals with the canonical interconnection of discrete-time linear port-Hamiltonian systems. A conservative discrete linear port-Hamiltonian dynamics involving a modified conjugate port-output is introduced. It is shown that the projection yielding the discrete dynamics and the composition by canonical interconnection commute. As a by-product, symplecticity of the numerical flow is preserved by interconnection whenever input vector fields are Hamiltonian vector fields, which is analogous to the continuous case. The negative feedback interconnection of two circuits illustrates the results.
Citation
- Journal: 52nd IEEE Conference on Decision and Control
- Year: 2013
- Volume:
- Issue:
- Pages: 3166–3171
- Publisher: IEEE
- DOI: 10.1109/cdc.2013.6760366
BibTeX
@inproceedings{Aoues_2013,
title={{Canonical interconnection of discrete linear port-Hamiltonian systems}},
DOI={10.1109/cdc.2013.6760366},
booktitle={{52nd IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Aoues, Said and Eberard, Damien and Marquis-Favre, Wilfrid},
year={2013},
pages={3166--3171}
}
References
- Talasila, V., Clemente-Gallardo, J. & van der Schaft, A. J. Discrete port-Hamiltonian systems. Systems & Control Letters 55, 478–486 (2006) – 10.1016/j.sysconle.2005.10.001
- van der schaf, L2-Gain and Passivity Techniques in Nonlinear Control (1999)
- McLachlan, R. I., Sun, Y. & Tse, P. S. P. Linear Stability of Partitioned Runge–Kutta Methods. SIAM J. Numer. Anal. 49, 232–263 (2011) – 10.1137/100787234
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics 62, 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- maschke, P ort controlled hamiltonian systems: Modeling origins and system theoretic properties. proc 3rd NOLCOS NOLCOS’92 (1992)
- McLachlan, R. I. A New Implementation of Symplectic Runge–Kutta Methods. SIAM J. Sci. Comput. 29, 1637–1649 (2007) – 10.1137/06065338x
- Laila, D. S. & Astolfi, A. Construction of discrete-time models for port-controlled Hamiltonian systems with applications. Systems & Control Letters 55, 673–680 (2006) – 10.1016/j.sysconle.2005.09.012
- Leimkuhler, B. & Reich, S. Simulating Hamiltonian Dynamics. (2005) doi:10.1017/cbo9780511614118 – 10.1017/cbo9780511614118
- Cohen, D. & Hairer, E. Linear energy-preserving integrators for Poisson systems. Bit Numer Math 51, 91–101 (2011) – 10.1007/s10543-011-0310-z
- Cohen, D. Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems. IMA Journal of Numerical Analysis 26, 34–59 (2006) – 10.1093/imanum/dri020
- Bridges, T. J. & Reich, S. Numerical methods for Hamiltonian PDEs. J. Phys. A: Math. Gen. 39, 5287–5320 (2006) – 10.1088/0305-4470/39/19/s02
- Itoh, T. & Abe, K. Hamiltonian-conserving discrete canonical equations based on variational difference quotients. Journal of Computational Physics 76, 85–102 (1988) – 10.1016/0021-9991(88)90132-5
- goren-slimer, A direct discrete-time IDA-PBC design method for a class of under actuated hamiltonian systems. 18th IFAC World Congress (2011)
- goren-slimer, Gradient based discrete-time modeling and control of hamiltonian systems. 17th IFAC World Congress (2008)
- golo, Hamiltonian discretization of the the telegrapher’s equation. Automatica (2004)
- Feng, K. & Qin, M. Symplectic Geometric Algorithms for Hamiltonian Systems. (Springer Berlin Heidelberg, 2010). doi:10.1007/978-3-642-01777-3 – 10.1007/978-3-642-01777-3
- hairer, Geometric numerical integration. Structure-Preserving Algorithms for Ordinary Differential Equations (2002)
- greenspan, Discrete numerical methods. Journal of Engineering Physics (1974)