Energy-Based In-Domain Control and Observer Design for Infinite-Dimensional Port-Hamiltonian Systems
Authors
Tobias Malzer, Jesús Toledo, Yann Le Gorrec, Markus Schöberl
Abstract
In this paper, we consider infinite-dimensional port-Hamiltonian systems with in-domain actuation by means of an approach based on Stokes-Dirac structures as well as in a framework that exploits an underlying jet-bundle structure. In both frameworks, a dynamic controller based on the energy-Casimir method is derived in order to stabilise certain equilibrias. Moreover, we propose distributed-parameter observers deduced by exploiting damping injection for the observer error. Finally, we compare the approaches by means of an in-domain actuated vibrating string and show the equivalence of the control schemes derived in both frameworks.
Keywords
infinite-dimensional systems; partial differential equations; in-domain actuation; port-Hamiltonian systems; structural invariants
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 9
- Pages: 468–475
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.06.104
- Note: 24th International Symposium on Mathematical Theory of Networks and Systems MTNS 2020- Cambridge, United Kingdom
BibTeX
@article{Malzer_2021,
title={{Energy-Based In-Domain Control and Observer Design for Infinite-Dimensional Port-Hamiltonian Systems}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.06.104},
number={9},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Malzer, Tobias and Toledo, Jesús and Gorrec, Yann Le and Schöberl, Markus},
year={2021},
pages={468--475}
}
References
- Ennsbrunner, H. & Schlacher, K. On the geometrical representation and interconnection of infinite dimensional port controlled Hamiltonian systems. Proceedings of the 44th IEEE Conference on Decision and Control 5263–5268 doi:10.1109/cdc.2005.1582998 – 10.1109/cdc.2005.1582998
- Guo, W. & Guo, B.-Z. Parameter estimation and stabilisation for a one-dimensional wave equation with boundary output constant disturbance and non-collocated control. International Journal of Control vol. 84 381–395 (2011) – 10.1080/00207179.2011.557092
- Jacob, (2012)
- Liu, Semigroups Associated with Dissipative Systems. (1999)
- Luo, (1998)
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Malzer, T., Rams, H., Kolar, B. & Schoberl, M. Stability Analysis of the Observer Error of an In-Domain Actuated Vibrating String. IEEE Control Systems Letters vol. 5 1237–1242 (2021) – 10.1109/lcsys.2020.3025414
- Malzer, On structural invariants in the energy-based in-domain control of infinite-dimensional port-Hamiltonian systems. Systems & Control Letters (2020)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Rams, H. & Schoberl, M. On structural invariants in the energy based control of port-Hamiltonian systems with second-order Hamiltonian. 2017 American Control Conference (ACC) 1139–1144 (2017) doi:10.23919/acc.2017.7963106 – 10.23919/acc.2017.7963106
- Rams, Optimal Motion Planning and Energy-Based Control of a Single Mast Stacker Crane. IEEE Transactions on Control Systems Technology (2017)
- Schaum, A., Moreno, J. A. & Meurer, T. Dissipativity-based observer design for a class of coupled 1-D semi-linear parabolic PDE systems. IFAC-PapersOnLine vol. 49 98–103 (2016) – 10.1016/j.ifacol.2016.07.425
- Schöberl, (2014)
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- Schoberl, M. & Siuka, A. On Casimir functionals for field theories in Port-Hamiltonian description for control purposes. IEEE Conference on Decision and Control and European Control Conference 7759–7764 (2011) doi:10.1109/cdc.2011.6160430 – 10.1109/cdc.2011.6160430
- Schoberl, M. & Siuka, A. Analysis and comparison of port-Hamiltonian formulations for field theories - demonstrated by means of the Mindlin plate. 2013 European Control Conference (ECC) 548–553 (2013) doi:10.23919/ecc.2013.6669137 – 10.23919/ecc.2013.6669137
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica vol. 50 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Smyshlyaev, A. & Krstic, M. Backstepping observers for a class of parabolic PDEs. Systems & Control Letters vol. 54 613–625 (2005) – 10.1016/j.sysconle.2004.11.001
- Stürzer, D., Arnold, A. & Kugi, A. Closed-loop stability analysis of a gantry crane with heavy chain and payload. International Journal of Control vol. 91 1931–1943 (2017) – 10.1080/00207179.2017.1335439
- van der Schaft, (2000)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3