Passivity-Based Control of Implicit Port-Hamiltonian Systems
Authors
Abstract
The main contribution of this paper is the generalisation of well-known energy-based control techniques (i.e., energy-balancing passivity-based control and passivity-based control with state modulated source), to the case in which the plant is a port-Hamiltonian system in implicit form. A typical situation is when (part of) the system is obtained from the spatial discretization of an infinite dimensional port-Hamiltonian system: in this case, the dynamics is not given in standard input-state-output form, but as a set of DAEs. Consequently, the control by energy-shaping has to be extended to deal with dynamical systems with constraints. The general methodology is discussed with the help of a simple but illustrative example, i.e. a transmission line interconnected with an RLC circuit.
Citation
- Journal: SIAM Journal on Control and Optimization
- Year: 2014
- Volume: 52
- Issue: 4
- Pages: 2422–2448
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/130918228
BibTeX
@article{Macchelli_2014,
title={{Passivity-Based Control of Implicit Port-Hamiltonian Systems}},
volume={52},
ISSN={1095-7138},
DOI={10.1137/130918228},
number={4},
journal={SIAM Journal on Control and Optimization},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Macchelli, Alessandro},
year={2014},
pages={2422--2448}
}
References
- Bassi L., Berlin (2007)
- Batlle C., Orlando, FL (2011)
- Blankenstein, G. & van der Schaft, A. J. Symmetry and reduction in implicit generalized Hamiltonian systems. Reports on Mathematical Physics vol. 47 57–100 (2001) – 10.1016/s0034-4877(01)90006-0
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control vol. 16 545–563 (2010) – 10.3166/ejc.16.545-563
- Hamroun B., Mexico (2008)
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Macchelli A., HI (2012)
- Macchelli A., France (2013)
- Macchelli A., Italy (2013)
- Macchelli A., Switzerland (2013)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Macchelli A., Italy (2010)
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega R., NJ (2000)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- van der Schaft A.J., Heidelberg (2009)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Voß T., Orlando, FL (2011)