Modular passivity-based modelling of piezoelectric actuators
Authors
Ignacio Díaz, Héctor Ramírez, Yann Le Gorrec, Yongxin Wu
Abstract
No available
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2025
- Volume: 31
- Issue: 1
- Pages:
- Publisher: Informa UK Limited
- DOI: 10.1080/13873954.2025.2533294
BibTeX
@article{D_az_2025,
title={{Modular passivity-based modelling of piezoelectric actuators}},
volume={31},
ISSN={1744-5051},
DOI={10.1080/13873954.2025.2533294},
number={1},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Díaz, Ignacio and Ramírez, Héctor and Le Gorrec, Yann and Wu, Yongxin},
year={2025}
}References
- Al Janaideh, M., Al Saaideh, M. & Rakotondrabe, M. On hysteresis modeling of a piezoelectric precise positioning system under variable temperature. Mechanical Systems and Signal Processing 145, 106880 (2020) – 10.1016/j.ymssp.2020.106880
- Ayala, E. P., Wu, Y., Rabenorosoa, K. & Le Gorrec, Y. Energy-Based Modeling and Control of a Piezotube Actuated Optical Fiber. IEEE/ASME Trans. Mechatron. 28, 385–395 (2023) – 10.1109/tmech.2022.3199566
- Caballeria, J., Ramirez, H. & Gorrec, Y. L. An irreversible port-Hamiltonian model for a class of piezoelectric actuators. IFAC-PapersOnLine 54, 436–441 (2021) – 10.1016/j.ifacol.2021.10.393
- Calchand, N., Hubert, A. & Le Gorrec, Y. Port hamiltonian modeling of MSMA based actuator: toward a thermodynamically consistent formulation. IFAC Proceedings Volumes 45, 260–264 (2012) – 10.3182/20120829-3-it-4022.00044
- Qiu, Z., Wang, B., Zhang, X. & Han, J. Direct adaptive fuzzy control of a translating piezoelectric flexible manipulator driven by a pneumatic rodless cylinder. Mechanical Systems and Signal Processing 36, 290–316 (2013) – 10.1016/j.ymssp.2012.10.008
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Fu, X. et al. Piezoelectric Hysteresis Modeling of Hybrid Driven Three-Dimensional Elliptical Vibration Aided Cutting System Based on an Improved Flower Pollination Algorithm. Micromachines 12, 1532 (2021) – 10.3390/mi12121532
- Gan, J. & Zhang, X. A review of nonlinear hysteresis modeling and control of piezoelectric actuators. AIP Advances 9, (2019) – 10.1063/1.5093000
- Ping Ge & Musa Jouaneh. Tracking control of a piezoceramic actuator. IEEE Trans. Contr. Syst. Technol. 4, 209–216 (1996) – 10.1109/87.491195
- Georges Sabat, R., Mukherjee, B. K., Ren, W. & Yang, G. Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. Journal of Applied Physics 101, (2007) – 10.1063/1.2560441
- Goldfarb, M. & Celanovic, N. A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators. Journal of Dynamic Systems, Measurement, and Control 119, 478–485 (1997) – 10.1115/1.2801282
- Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst. 17, 69–79 (1997) – 10.1109/37.588158
- Habineza, D., Rakotondrabe, M. & Le Gorrec, Y. Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner. IEEE Trans. Contr. Syst. Technol. 23, 1797–1806 (2015) – 10.1109/tcst.2014.2386779
- Ikhouane, F., Manosa, V. & Rodellar, J. Bounded and dissipative solutions of the Bouc-Wen model for hysteretic structural systems. Proceedings of the 2004 American Control Conference 3520–3525 vol.4 (2004) doi:10.23919/acc.2004.1384457 – 10.23919/acc.2004.1384457
- Jayawardhana, B., Ouyang, R. & Andrieu, V. Stability of systems with the Duhem hysteresis operator: The dissipativity approach. Automatica 48, 2657–2662 (2012) – 10.1016/j.automatica.2012.06.069
- Karnopp, D. Computer Models of Hysteresis in Mechanical and Magnetic Components. Journal of the Franklin Institute 316, 405–415 (1983) – 10.1016/0016-0032(83)90051-0
- Karnopp, D. C., Margolis, D. L. & Rosenberg, R. C. System Dynamics. (2012) doi:10.1002/9781118152812 – 10.1002/9781118152812
- Köhler, R. & Rinderknecht, S. A phenomenological approach to temperature dependent piezo stack actuator modeling. Sensors and Actuators A: Physical 200, 123–132 (2013) – 10.1016/j.sna.2012.10.003
- Liu, P., Yan, P. & Özbay, H. Design and trajectory tracking control of a piezoelectric nano-manipulator with actuator saturations. Mechanical Systems and Signal Processing 111, 529–544 (2018) – 10.1016/j.ymssp.2018.04.002
- Low, T. S. & Guo, W. Modeling of a three-layer piezoelectric bimorph beam with hysteresis. J. Microelectromech. Syst. 4, 230–237 (1995) – 10.1109/84.475550
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Multi-variable port Hamiltonian model of piezoelectric material. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566) vol. 1 897–902 – 10.1109/iros.2004.1389466
- Macki, J. W., Nistri, P. & Zecca, P. Mathematical Models for Hysteresis. SIAM Rev. 35, 94–123 (1993) – 10.1137/1035005
- Momeni, M. & Fallah, N. Meshfree finite volume method for active vibration control of temperature-dependent piezoelectric laminated composite plates. Engineering Analysis with Boundary Elements 130, 364–378 (2021) – 10.1016/j.enganabound.2021.06.002
- Morris, K. A. What is Hysteresis? Applied Mechanics Reviews 64, (2011) – 10.1115/1.4007112
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Rajiv, A., Zhou, Y., Ridge, J., Reinhall, P. G. & Seibel, E. J. Electromechanical Model-Based Design and Testing of Fiber Scanners for Endoscopy. Journal of Medical Devices 12, (2018) – 10.1115/1.4040271
- Rakotondrabe, M. Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators. IEEE Trans. Automat. Sci. Eng. 8, 428–431 (2011) – 10.1109/tase.2010.2081979
- Rakotondrabe, M., Haddab, Y. & Lutz, P. Quadrilateral Modelling and Robust Control of a Nonlinear Piezoelectric Cantilever. IEEE Trans. Contr. Syst. Technol. 17, 528–539 (2009) – 10.1109/tcst.2008.2001151
- Ramirez, H., Gorrec, Y. L. & Calchand, N. Irreversible port-Hamiltonian formulation of non-isothermal electromechanical systems with hysteresis. IFAC-PapersOnLine 51, 19–24 (2018) – 10.1016/j.ifacol.2018.06.005
- Ramirez, H. & Le Gorrec, Y. An Overview on Irreversible Port-Hamiltonian Systems. Entropy 24, 1478 (2022) – 10.3390/e24101478
- Ramirez, H. & Le Gorrec, Y. Interconnection of irreversible port Hamiltonian systems. Automatica 170, 111846 (2024) – 10.1016/j.automatica.2024.111846
- Rizzello, G., Naso, D. & Seelecke, S. Hysteresis modeling in thermal shape memory alloy wire actuators: an irreversible port-Hamiltonian approach. 2019 IEEE 58th Conference on Decision and Control (CDC) 7937–7943 (2019) doi:10.1109/cdc40024.2019.9030010 – 10.1109/cdc40024.2019.9030010
- Savoie, M. & Shan, J. Temperature-dependent asymmetric Prandtl-Ishlinskii hysteresis model for piezoelectric actuators. Smart Mater. Struct. 31, 055022 (2022) – 10.1088/1361-665x/ac6552
- Senousy, M. S., Rajapakse, R. K. N. D., Mumford, D. & Gadala, M. S. Self-heat generation in piezoelectric stack actuators used in fuel injectors. Smart Mater. Struct. 18, 045008 (2009) – 10.1088/0964-1726/18/4/045008
- Song, H., Vdovin, G., Fraanje, R., Schitter, G. & Verhaegen, M. Extracting hysteresis from nonlinear measurement of wavefront-sensorless adaptive optics system. Opt. Lett. 34, 61 (2008) – 10.1364/ol.34.000061
- Stefanski, F., Minorowicz, B., Persson, J., Plummer, A. & Bowen, C. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl–Ishlinskii hysteresis model. Mechanical Systems and Signal Processing 82, 412–431 (2017) – 10.1016/j.ymssp.2016.05.032
- Tavares, R. & Ruderman, M. Dissipation in suspension system augmented by piezoelectric stack: port-Hamiltonian approach. 2020 28th Mediterranean Conference on Control and Automation (MED) 168–173 (2020) doi:10.1109/med48518.2020.9183317 – 10.1109/med48518.2020.9183317
- Thorlabs, Piezoelectric bimorph with holder, 150 V,±135 µm travel (2020)
- Tian, Y. et al. Development of a XYZ scanner for home-made atomic force microscope based on FPAA control. Mechanical Systems and Signal Processing 131, 222–242 (2019) – 10.1016/j.ymssp.2019.05.057
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- Voß, T. & Scherpen, J. M. A. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation. SIAM J. Control Optim. 52, 493–519 (2014) – 10.1137/090774598
- Wang, T. et al. From model-driven to data-driven: A review of hysteresis modeling in structural and mechanical systems. Mechanical Systems and Signal Processing 204, 110785 (2023) – 10.1016/j.ymssp.2023.110785
- Yang, W., Lee, S.-Y. & You, B.-J. A piezoelectric actuator with a motion-decoupling amplifier for optical disk drives. Smart Mater. Struct. 19, 065027 (2010) – 10.1088/0964-1726/19/6/065027
- Zhang, H., Yang, Q., Zhang, C., Li, Y. & Chen, Y. Temperature-dependent hysteresis model based on temporal convolutional network. AIP Advances 14, (2024) – 10.1063/9.0000824