Irreversible port-Hamiltonian formulation of non-isothermal electromechanical systems with hysteresis
Authors
Hector Ramirez, Yann Le Gorrec, Nandish Calchand
Abstract
An irreversible port-Hamiltonian system (IPHS) representation of non-isothermal electromechanical systems with hysteresis is proposed. By representing the hysterisis through hysterons interconnected with the mechanical and electrical components, it is shown that the hysteresis behaves as an irreversible process. This is elegantly captured by the IPHS structure and makes it possible to isolate the different irreversible phenomena of the overall system. Furthermore, it is shown that in general an electromechanical system with hysteresis corresponds to a reversible-IPHS, i.e., the combination of a conservative Hamiltonian system with an irreversible one defined with respect to the same Hamiltonian. A micro-mechatronic example is used to illustrate the approach.
Keywords
Port-Hamiltonian system; irreversible thermodynamics; hysteresis; micro-mechatronics
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 19–24
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.005
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Ramirez_2018,
title={{Irreversible port-Hamiltonian formulation of non-isothermal electromechanical systems with hysteresis}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.005},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Ramirez, Hector and Gorrec, Yann Le and Calchand, Nandish},
year={2018},
pages={19--24}
}
References
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Calchand, (2014)
- Callen, (1985)
- Duhem, Sur les deformations permanentes et lhysteresis. Bibliotheque de lEcole polytechnique (1902)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Systems vol. 17 69–79 (1997) – 10.1109/37.588158
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Karnopp, D. Computer Models of Hysteresis in Mechanical and Magnetic Components. Journal of the Franklin Institute vol. 316 405–415 (1983) – 10.1016/0016-0032(83)90051-0
- Keenan, J. H. Availability and irreversibility in thermodynamics. British Journal of Applied Physics vol. 2 183–192 (1951) – 10.1088/0508-3443/2/7/302
- Kondepudi, (1998)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Öttinger, H. C. & Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Physical Review E vol. 56 6633–6655 (1997) – 10.1103/physreve.56.6633
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Ramirez, H. & Gorrec, Y. L. An irreversible port-Hamiltonian formulation of distributed diffusion processes. IFAC-PapersOnLine vol. 49 46–51 (2016) – 10.1016/j.ifacol.2016.10.752
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Wen, Method for random vibration of hysteretic systems. journal of the engineering mechanics division. Journal of the engineering mechanics division (1976)
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493