Interconnection of irreversible port Hamiltonian systems
Authors
Hector Ramirez, Yann Le Gorrec
Abstract
This paper shows how the interconnection of two controlled Irreversible port Hamiltonian Systems has to be state and co-state modulated in order to ensure the closed-loop Irreversible port Hamiltonian structure, satisfying the first and second laws of Thermodynamics. It proposes a precise parametrization of this modulation from the open-loop systems structures in order to guarantee the consistency of the closed loop energy and entropy balance equations. The results are illustrated by means of the examples of a heat-exchanger, a gas-piston system and a chemical reaction.
Keywords
Port-Hamiltonian systems; Irreversible thermodynamics; Thermo-mechanical systems; Port-based modeling; State modulated output feedback
Citation
- Journal: Automatica
- Year: 2024
- Volume: 170
- Issue:
- Pages: 111846
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2024.111846
BibTeX
@article{Ramirez_2024,
title={{Interconnection of irreversible port Hamiltonian systems}},
volume={170},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2024.111846},
journal={Automatica},
publisher={Elsevier BV},
author={Ramirez, Hector and Le Gorrec, Yann},
year={2024},
pages={111846}
}
References
- Aris, Elementary chemical reactor analysis. (1989)
- Benzi, F., Ferraguti, F., Riggio, G. & Secchi, C. An Energy-Based Control Architecture for Shared Autonomy. IEEE Transactions on Robotics vol. 38 3917–3935 (2022) – 10.1109/tro.2022.3180885
- Callen, (1985)
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems vol. 12 159–174 (2006) – 10.1080/13873950500068823
- (2009)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Favache, A., Dochain, D. & Winkin, J. J. Power-shaping control: Writing the system dynamics into the Brayton–Moser form. Systems & Control Letters vol. 60 618–624 (2011) – 10.1016/j.sysconle.2011.04.021
- Feinberg, M. Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chemical Engineering Science vol. 42 2229–2268 (1987) – 10.1016/0009-2509(87)80099-4
- Ferraguti, F. et al. An Energy Tank-Based Interactive Control Architecture for Autonomous and Teleoperated Robotic Surgery. IEEE Transactions on Robotics vol. 31 1073–1088 (2015) – 10.1109/tro.2015.2455791
- Franken, M., Stramigioli, S., Misra, S., Secchi, C. & Macchelli, A. Bilateral Telemanipulation With Time Delays: A Two-Layer Approach Combining Passivity and Transparency. IEEE Transactions on Robotics vol. 27 741–756 (2011) – 10.1109/tro.2011.2142430
- Gay-Balmaz, Dirac structures and variational structures of port-Dirac systems in nonequilibrium thermodynamic. IMA Journal of Mathematical Control and Information (2020)
- Gay-Balmaz, Systems, variational principles and interconnections in nonequilibrium thermodynamics. Philosophical Transaction of the Royal Society A (2023)
- Grmela, M. Lagrange hydrodynamics as extended Euler hydrodynamics: Hamiltonian and GENERIC structures. Physics Letters A vol. 296 97–104 (2002) – 10.1016/s0375-9601(02)00190-1
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Horn, F. & Jackson, R. General mass action kinetics. Archive for Rational Mechanics and Analysis vol. 47 81–116 (1972) – 10.1007/bf00251225
- Kondepudi, (1998)
- Le Gorrec, Y., Mora, L. A. & Ramirez, H. Boundary control of infinite dimensional irreversible port-Hamiltonian systems: the heat equation. MATHMOD 2022 Discussion Contribution Volume (2022) doi:10.11128/arep.17.a17207 – 10.11128/arep.17.a17207
- Libermann, (1987)
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ramirez, H. & Le Gorrec, Y. An Overview on Irreversible Port-Hamiltonian Systems. Entropy vol. 24 1478 (2022) – 10.3390/e24101478
- Ramirez, H. & Gorrec, Y. L. On the interconnection of irreversible port-Hamiltonian systems. IFAC-PapersOnLine vol. 56 114–119 (2023) – 10.1016/j.ifacol.2023.02.020
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- van der Schaft, (2000)
- van der Schaft, Geometric modeling for control of thermodynamic systems. Entropy (2023)
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925
- Tefera, D. T., Dubljevic, S. & Prasad, V. A Port Hamiltonian approach to dynamical chemical process systems network modeling and analysis. Chemical Engineering Science vol. 261 117907 (2022) – 10.1016/j.ces.2022.117907
- Villalobos, I., Ramírez, H. & Gorrec, Y. L. Energy shaping plus Damping injection of Irreversible Port Hamiltonian Systems. IFAC-PapersOnLine vol. 53 11539–11544 (2020) – 10.1016/j.ifacol.2020.12.630
- Zenfari, Observer design for a class of irreversible port Hamiltonian systems. An International Journal of Optimization and Control: Theories and Applications (IJOCTA) (2023)