Hysteresis modeling in thermal shape memory alloy wire actuators: an irreversible port-Hamiltonian approach
Authors
Gianluca Rizzello, David Naso, Stefan Seelecke
Abstract
In this paper we present an irreversible port-Hamiltonian model for describing the hysteresis in thermal shape memory alloy (SMA) wire actuators. In contrast to most mechatronic actuators which are operated under isothermal conditions, SMA wires must be heated with an electric current to generate a stroke. As a result of the non-isothermal activation, concepts such as energy dissipation no longer hold from a thermodynamic viewpoint, thus making it difficult to quantitatively analyze the relationship between SMA hysteresis and system stability. Starting from a physics-based model of the SMA based on the work of Müller-Achenbach-Seelecke, a candidate Helmholtz free-energy function is first proposed to describe the material under non-isothermal condition. Based on this result, the system internal energy is constructed and used as a storage function for an irreversible port-Hamiltonian representation. The developed model permits to quantify the energetic performance of SMA wires during non-isothermal actuation, as well as to assess the system thermodynamic consistency based on irreversible entropy production. In addition, the model represents the first step towards the design of energy-based control systems for hysteresis compensation.
Citation
- Journal: 2019 IEEE 58th Conference on Decision and Control (CDC)
- Year: 2019
- Volume:
- Issue:
- Pages: 7937–7943
- Publisher: IEEE
- DOI: 10.1109/cdc40024.2019.9030010
BibTeX
@inproceedings{Rizzello_2019,
title={{Hysteresis modeling in thermal shape memory alloy wire actuators: an irreversible port-Hamiltonian approach}},
DOI={10.1109/cdc40024.2019.9030010},
booktitle={{2019 IEEE 58th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Rizzello, Gianluca and Naso, David and Seelecke, Stefan},
year={2019},
pages={7937--7943}
}
References
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Multi-variable port Hamiltonian model of piezoelectric material. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566) vol. 1 897–902 – 10.1109/iros.2004.1389466
- Nishida, G., Takagi, K., Maschke, B. & Osada, T. Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Engineering Practice 19, 321–334 (2011) – 10.1016/j.conengprac.2010.10.005
- Rizzello, G., Naso, D. & Seelecke, S. A Thermodynamically Consistent Port-Hamiltonian Model for Dielectric Elastomer Membrane Actuators and Generators. IFAC-PapersOnLine 50, 4855–4862 (2017) – 10.1016/j.ifacol.2017.08.974
- rizzello, Passivity Analysis and PortHamiltonian Formulation of the Müller-Achenbach-Seelecke Model for Shape Memory Alloys: the Isothermal Case. (2018)
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science 89, 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Struchtrup, H. Thermodynamics and Energy Conversion. (Springer Berlin Heidelberg, 2014). doi:10.1007/978-3-662-43715-5 – 10.1007/978-3-662-43715-5
- Seelecke, S. & Mu¨ller, I. Shape memory alloy actuators in smart structures: Modeling and simulation. Applied Mechanics Reviews 57, 23–46 (2004) – 10.1115/1.1584064
- Furst, S. J. & Seelecke, S. Modeling and experimental characterization of the stress, strain, and resistance of shape memory alloy actuator wires with controlled power input. Journal of Intelligent Material Systems and Structures 23, 1233–1247 (2012) – 10.1177/1045389x12445036
- Rizzello, G., Mandolino, M. A., Schmidt, M., Naso, D. & Seelecke, S. An accurate dynamic model for polycrystalline shape memory alloy wire actuators and sensors. Smart Mater. Struct. 28, 025020 (2019) – 10.1088/1361-665x/aae3b8
- Müller, I. & Seelecke, S. Thermodynamic aspects of shape memory alloys. Mathematical and Computer Modelling 34, 1307–1355 (2001) – 10.1016/s0895-7177(01)00134-0
- paiva, An overview of constitutive models for shape memory alloys. Mathematical Problems in Engineering (2005)
- Haga, Y. et al. Dynamic Braille display using SMA coil actuator and magnetic latch. Sensors and Actuators A: Physical 119, 316–322 (2005) – 10.1016/j.sna.2004.10.001
- Zakerzadeh, M. R. & Sayyaadi, H. Precise position control of shape memory alloy actuator using inverse hysteresis model and model reference adaptive control system. Mechatronics 23, 1150–1162 (2013) – 10.1016/j.mechatronics.2013.10.001
- Majima, S., Kodama, K. & Hasegawa, T. Modeling of shape memory alloy actuator and tracking control system with the model. IEEE Trans. Contr. Syst. Technol. 9, 54–59 (2001) – 10.1109/87.896745
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Toledo, L. F., Ge, J. Z., Oxoby, J. M., Chen, Y. & Perez-Arancibia, N. O. System identification of a NiTi-based SMA actuator using a modified Preisach model and adaptive control. 2017 American Control Conference (ACC) 183–190 (2017) doi:10.23919/acc.2017.7962951 – 10.23919/acc.2017.7962951
- Chaitanya S., K. & K., D. Demonstration of self-sensing in Shape Memory Alloy actuated gripper. 2013 IEEE International Symposium on Intelligent Control (ISIC) 218–222 (2013) doi:10.1109/isic.2013.6658620 – 10.1109/isic.2013.6658620
- Tiboni, M., Borboni, A., Mor, M. & Pomi, D. An innovative pneumatic mini-valve actuated by SMA Ni-Ti wires. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 225, 443–451 (2011) – 10.1177/2041304110394531
- calchand, Port hamiltonian modeling of msma based actuator: toward a thermodynamically consistent formulation. (0)