Energy-Based Modeling and Control of a Piezotube Actuated Optical Fiber
Authors
Edgar Perez Ayala, Yongxin Wu, Kanty Rabenorosoa, Yann Le Gorrec
Abstract
This article presents an energy-based modeling and control design method for a piezotube actuated optical fiber. A nonlinear infinite dimensional port Hamiltonian (pH) formulation of the 3-D flexible optical fiber is derived from the Cosserat rod dynamical equations. Then, the proposed infinite dimensional model is discretized using a pH structure and passivity preserving discretization method for the simulation and control design. This model is then validated against experimental data obtained using a built-in experimental setup equipped with a MEMS Analyzer. A complete pH formulation of the piezotube actuated optical fiber is proposed, combining the Cosserat rod model and actuator dynamics. This model is used for the end-point path control design using an interconnection and damping assignment passivity based control (IDA-PBC) method. Both the proposed pH model of the overall system and the controller are validated in simulation and against experimental results.
Citation
- Journal: IEEE/ASME Transactions on Mechatronics
- Year: 2023
- Volume: 28
- Issue: 1
- Pages: 385–395
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tmech.2022.3199566
BibTeX
@article{Ayala_2023,
title={{Energy-Based Modeling and Control of a Piezotube Actuated Optical Fiber}},
volume={28},
ISSN={1941-014X},
DOI={10.1109/tmech.2022.3199566},
number={1},
journal={IEEE/ASME Transactions on Mechatronics},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Ayala, Edgar Perez and Wu, Yongxin and Rabenorosoa, Kanty and Le Gorrec, Yann},
year={2023},
pages={385--395}
}
References
- Burgner-Kahrs, J., Rucker, D. C. & Choset, H. Continuum Robots for Medical Applications: A Survey. IEEE Transactions on Robotics vol. 31 1261–1280 (2015) – 10.1109/tro.2015.2489500
- Girerd, C. et al. Automatic Tip-Steering of Concentric Tube Robots in the Trachea Based on Visual SLAM. IEEE Transactions on Medical Robotics and Bionics vol. 2 582–585 (2020) – 10.1109/tmrb.2020.3034720
- Nguyen, D. V. A. et al. A Hybrid Concentric Tube Robot for Cholesteatoma Laser Surgery. IEEE Robotics and Automation Letters vol. 7 462–469 (2022) – 10.1109/lra.2021.3128685
- Mattos, L. S. et al. μRALP and Beyond: Micro-Technologies and Systems for Robot-Assisted Endoscopic Laser Microsurgery. Frontiers in Robotics and AI vol. 8 (2021) – 10.3389/frobt.2021.664655
- Moon, S., Lee, S.-W., Rubinstein, M., Wong, B. J. F. & Chen, Z. Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging. Optics Express vol. 18 21183 (2010) – 10.1364/oe.18.021183
- Kaur, M., Lane, P. M. & Menon, C. Scanning and Actuation Techniques for Cantilever-Based Fiber Optic Endoscopic Scanners—A Review. Sensors vol. 21 251 (2021) – 10.3390/s21010251
- Smithwick, Q. Y. J., Reinhall, P. G., Vagners, J. & Seibel, E. J. A Nonlinear State-Space Model of a Resonating Single Fiber Scanner for Tracking Control: Theory and Experiment. Journal of Dynamic Systems, Measurement, and Control vol. 126 88–101 (2004) – 10.1115/1.1649974
- Rajiv, A., Zhou, Y., Ridge, J., Reinhall, P. G. & Seibel, E. J. Electromechanical Model-Based Design and Testing of Fiber Scanners for Endoscopy. Journal of Medical Devices vol. 12 (2018) – 10.1115/1.4040271
- Reinhall, P. G. Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope. Optical Engineering vol. 45 043001 (2006) – 10.1117/1.2188387
- Till, J., Aloi, V. & Rucker, C. Real-time dynamics of soft and continuum robots based on Cosserat rod models. The International Journal of Robotics Research vol. 38 723–746 (2019) – 10.1177/0278364919842269
- Renda, F., Giorelli, M., Calisti, M., Cianchetti, M. & Laschi, C. Dynamic Model of a Multibending Soft Robot Arm Driven by Cables. IEEE Transactions on Robotics vol. 30 1109–1122 (2014) – 10.1109/tro.2014.2325992
- Till, J. & Rucker, D. C. Elastic rod dynamics: Validation of a real-time implicit approach. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 3013–3019 (2017) doi:10.1109/iros.2017.8206139 – 10.1109/iros.2017.8206139
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Chang, H.-S. et al. Energy Shaping Control of a CyberOctopus Soft Arm. 2020 59th IEEE Conference on Decision and Control (CDC) 3913–3920 (2020) doi:10.1109/cdc42340.2020.9304408 – 10.1109/cdc42340.2020.9304408
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Liu, N., Wu, Y. & Le Gorrec, Y. Energy-Based Modeling of Ionic Polymer–Metal Composite Actuators Dedicated to the Control of Flexible Structures. IEEE/ASME Transactions on Mechatronics vol. 26 3139–3150 (2021) – 10.1109/tmech.2021.3053609
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Franco, E., Tang, J., Casanovas, A. G., y Baena, F. R. & Astolfi, A. Position Control of Soft Manipulators with Dynamic and Kinematic Uncertainties. IFAC-PapersOnLine vol. 53 9847–9852 (2020) – 10.1016/j.ifacol.2020.12.2689
- Franco, E., Garriga Casanovas, A., Tang, J., Rodriguez y Baena, F. & Astolfi, A. Position regulation in Cartesian space of a class of inextensible soft continuum manipulators with pneumatic actuation. Mechatronics vol. 76 102573 (2021) – 10.1016/j.mechatronics.2021.102573
- Franco, E., Garriga-Casanovas, A., Tang, J., Rodriguez y Baena, F. & Astolfi, A. Adaptive Energy Shaping Control of a Class of Nonlinear Soft Continuum Manipulators. IEEE/ASME Transactions on Mechatronics vol. 27 280–291 (2022) – 10.1109/tmech.2021.3063121
- Yeh, Y., Cisneros, N., Wu, Y., Rabenorosoa, K. & Gorrec, Y. L. Modeling and Position Control of the HASEL Actuator via Port-Hamiltonian Approach. IEEE Robotics and Automation Letters vol. 7 7100–7107 (2022) – 10.1109/lra.2022.3181365
- Cosserat, Sur la thorie de llasticit. Premier mmoire. Annales de la Facult des Sci. de Toulouse, Mathmatiques (1896)
- Antman, S. S. Nonlinear Problems of Elasticity. Applied Mathematical Sciences (Springer New York, 1995). doi:10.1007/978-1-4757-4147-6 – 10.1007/978-1-4757-4147-6
- Rucker, D. C. & Webster III, R. J. Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading. IEEE Transactions on Robotics vol. 27 1033–1044 (2011) – 10.1109/tro.2011.2160469
- Till, On the Statics, Dynamics, and Stability of Continuum Robots: Model Formulations and Efficient Computational Schemes (2019)
- Murray, R. M., Li, Z. & Sastry, S. S. A Mathematical Introduction to Robotic Manipulation. (CRC Press, 2017). doi:10.1201/9781315136370 – 10.1201/9781315136370
- Linn, J., Lang, H. & Tuganov, A. Geometrically exact Cosserat rods with Kelvin–Voigt type viscous damping. Mechanical Sciences vol. 4 79–96 (2013) – 10.5194/ms-4-79-2013
- van der Schaft, A. Port-Hamiltonian Modeling for Control. Annual Review of Control, Robotics, and Autonomous Systems vol. 3 393–416 (2020) – 10.1146/annurev-control-081219-092250
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Habineza, D., Zouari, M., Le Gorrec, Y. & Rakotondrabe, M. Multivariable Compensation of Hysteresis, Creep, Badly Damped Vibration, and Cross Couplings in Multiaxes Piezoelectric Actuators. IEEE Transactions on Automation Science and Engineering vol. 15 1639–1653 (2018) – 10.1109/tase.2017.2772221
- Caballeria, J., Ramirez, H. & Gorrec, Y. L. An irreversible port-Hamiltonian model for a class of piezoelectric actuators. IFAC-PapersOnLine vol. 54 436–441 (2021) – 10.1016/j.ifacol.2021.10.393
- Habineza, D., Rakotondrabe, M. & Le Gorrec, Y. Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner. IEEE Transactions on Control Systems Technology vol. 23 1797–1806 (2015) – 10.1109/tcst.2014.2386779