Stability Analysis of the Observer Error of an In-Domain Actuated Vibrating String
Authors
Tobias Malzer, Hubert Rams, Bernd Kolar, Markus Schoberl
Abstract
In this letter, the behaviour of the observer error of an in-domain actuated vibrating string, where the observer system has been designed based on energy considerations exploiting a port-Hamiltonian system representation for infinite-dimensional systems, is analysed. Thus, the observer-error dynamics are reformulated as an abstract Cauchy problem, which enables to draw conclusions regarding the well-posedness of the observer-error system. Furthermore, we show that the observer error is asymptotically stable by applying LaSalle’s invariance principle.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2021
- Volume: 5
- Issue: 4
- Pages: 1237–1242
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2020.3025414
BibTeX
@article{Malzer_2021,
title={{Stability Analysis of the Observer Error of an In-Domain Actuated Vibrating String}},
volume={5},
ISSN={2475-1456},
DOI={10.1109/lcsys.2020.3025414},
number={4},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Malzer, Tobias and Rams, Hubert and Kolar, Bernd and Schoberl, Markus},
year={2021},
pages={1237--1242}
}
References
- Schoberl, M. & Siuka, A. Analysis and comparison of port-Hamiltonian formulations for field theories - demonstrated by means of the Mindlin plate. 2013 European Control Conference (ECC) 548–553 (2013) doi:10.23919/ecc.2013.6669137 – 10.23919/ecc.2013.6669137
- malzer, Energy-based in-domain control and observer design for infinite-dimensional port-Hamiltonian systems. Proc Int Symp Math Theory Netw Syst (2020)
- Schoberl, M. & Siuka, A. On Casimir functionals for field theories in Port-Hamiltonian description for control purposes. IEEE Conference on Decision and Control and European Control Conference 7759–7764 (2011) doi:10.1109/cdc.2011.6160430 – 10.1109/cdc.2011.6160430
- Rams, H. & Schoberl, M. On structural invariants in the energy based control of port-Hamiltonian systems with second-order Hamiltonian. 2017 American Control Conference (ACC) 1139–1144 (2017) doi:10.23919/acc.2017.7963106 – 10.23919/acc.2017.7963106
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- toledo, Passive observers for distributed port-Hamiltonian systems. Proc 21st IFAC World Congress (2020)
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- schöberl, Contributions to the Analysis of Structural Properties of Dynamical Systems in Control and Systems Theory A Geometric Approach (2014)
- Rams, H., Schoberl, M. & Schlacher, K. Optimal Motion Planning and Energy-Based Control of a Single Mast Stacker Crane. IEEE Transactions on Control Systems Technology vol. 26 1449–1457 (2018) – 10.1109/tcst.2017.2710953
- Henikl, J., Schröck, J., Meurer, T. & Kugi, A. Infinit-dimensionaler Reglerentwurf für Euler-Bernoulli Balken mit Macro-Fibre Composite Aktoren. auto vol. 60 10–19 (2012) – 10.1524/auto.2012.0967
- Stürzer, D., Arnold, A. & Kugi, A. Closed-loop stability analysis of a gantry crane with heavy chain and payload. International Journal of Control vol. 91 1931–1943 (2017) – 10.1080/00207179.2017.1335439
- Schöberl, M. & Siuka, A. On the port-Hamiltonian representation of systems described by partial differential equations. IFAC Proceedings Volumes vol. 45 1–6 (2012) – 10.3182/20120829-3-it-4022.00001
- Ennsbrunner, H. & Schlacher, K. On the geometrical representation and interconnection of infinite dimensional port controlled Hamiltonian systems. Proceedings of the 44th IEEE Conference on Decision and Control 5263–5268 doi:10.1109/cdc.2005.1582998 – 10.1109/cdc.2005.1582998
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica vol. 50 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Miletić, M., Stürzer, D. & Arnold, A. An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete and Continuous Dynamical Systems - Series B vol. 20 3029–3055 (2015) – 10.3934/dcdsb.2015.20.3029
- luo, Stability and Stabilization of Infinite Dimensional Systems with Applications (1998)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- liu, Semigroups Associated with Dissipative Systems (1999)
- Guo, W. & Guo, B.-Z. Parameter estimation and stabilisation for a one-dimensional wave equation with boundary output constant disturbance and non-collocated control. International Journal of Control vol. 84 381–395 (2011) – 10.1080/00207179.2011.557092
- adams, Sobolev Spaces (2003)
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1