Modeling, discretization and motion control of a flexible beam in the port-Hamiltonian framework
Authors
M. Wang, A. Bestler, P. Kotyczka
Abstract
In this paper, we present an approach to solve the feedforward motion control problem for a flexible beam, modeled with linear Timoshenko beam theory. The originality lies in the fact that all design steps, from modeling, over discretization to feedforward control are executed within the port-Hamiltonian (PH) framework. To obtain a finite-dimensional PH model which is suitable for inversion-based feedforward control design, a geometric pseudo-spectral discretization is performed. The feedforward control is tested with a plant model implemented in standard FEM software. The results of this paper will be amended by feedback control to achieve highly dynamic motion control on a lab test rig which is currently under construction.
Keywords
Flexible robot arm; port-Hamiltonian systems; distributed parameter systems; pseudo-spectral method; geometric discretization; inversion-based feedforward control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2017
- Volume: 50
- Issue: 1
- Pages: 6799–6806
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2017.08.2511
- Note: 20th IFAC World Congress
BibTeX
@article{Wang_2017,
title={{Modeling, discretization and motion control of a flexible beam in the port-Hamiltonian framework}},
volume={50},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2017.08.2511},
number={1},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Wang, M. and Bestler, A. and Kotyczka, P.},
year={2017},
pages={6799--6806}
}
References
- Cardoso-Ribeiro, Piezoelectric beam with distributed control ports: a power-preserving discretization using weak formulation (2016)
- De Luca, A. & Siciliano, B. Inversion-based nonlinear control of robot arms with flexible links. Journal of Guidance, Control, and Dynamics vol. 16 1169–1176 (1993) – 10.2514/3.21142
- Garg, An overview of three pseudospectral methods for the numerical solution of optimal control problems. Advances in the Astronautical Sciences (2009)
- Hesthaven, J. S. From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex. SIAM Journal on Numerical Analysis vol. 35 655–676 (1998) – 10.1137/s003614299630587x
- Kotyczka, P. & Blancato, A. Feedforward control of a channel flow based on a discretized port-Hamiltonian model. IFAC-PapersOnLine vol. 48 194–199 (2015) – 10.1016/j.ifacol.2015.10.238
- Kotyczka, P. & Mei Wang. Dual observer-based compensator design for linear port-Hamiltonian systems. 2015 European Control Conference (ECC) 2908–2913 (2015) doi:10.1109/ecc.2015.7330979 – 10.1109/ecc.2015.7330979
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Lee, J. & Schultz, W. W. Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method. Journal of Sound and Vibration vol. 269 609–621 (2004) – 10.1016/s0022-460x(03)00047-6
- Loudini, Application of Timoshenko beam theory for deriving motion equations of a lightweight elastic link robot manipulator. ICGST-ARAS Journal (2006)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling and Simulation of Mechanical Systems With Rigid and Flexible Links. IEEE Transactions on Robotics vol. 25 1016–1029 (2009) – 10.1109/tro.2009.2026504
- Majkut, Free and forced vibrations of Timoshenko beams described by single difference equation. Journal of Theoretical and Applied Mechanics (2009)
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Schöberl, M. & Siuka, A. On the port-Hamiltonian representation of systems described by partial differential equations. IFAC Proceedings Volumes vol. 45 1–6 (2012) – 10.3182/20120829-3-it-4022.00001
- Schöberl, M. Differentialgeometrische Beschreibung und Analyse Tor-basierter Hamilton’scher Systeme. at - Automatisierungstechnik vol. 63 672–683 (2015) – 10.1515/auto-2015-0021
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Voss, T. & Scherpen, J. M. A. Structure Preserving Spatial Discretization of a 1-D Piezoelectric Timoshenko Beam. Multiscale Modeling & Simulation vol. 9 129–154 (2011) – 10.1137/100789038
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Vu, Geometric discretization for a plasma control model. IFAC Proceedings (2013)
- Fei-Yue Wang, Pixuan Zhou & Lever, P. Dynamic effects of rotatory inertia and shear deformation on flexible manipulators. 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929) vol. 3 2315–2320 – 10.1109/icsmc.1996.565530
- Preview-based stable-inversion for output tracking. Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251) 3544–3548 vol.5 (1999) doi:10.1109/acc.1999.782426 – 10.1109/acc.1999.782426