Data-driven identification of latent port-Hamiltonian systems
Authors
Johannes Rettberg, Jonas Kneifl, Julius Herb, Patrick Buchfink, Jörg Fehr, Bernard Haasdonk
Abstract
Conventional physics-based modeling techniques involve high effort, e.g., time and expert knowledge, while data-driven methods often lack interpretability, structure, and sometimes reliability. To mitigate this, we present a data-driven system identification framework that derives models in the port-Hamiltonian (pH) formulation. This formulation is suitable for multi-physical systems while guaranteeing the useful system theoretical properties of passivity and stability. Our framework combines linear and nonlinear reduction with structured, physics-motivated system identification. In this process, high-dimensional state data obtained from possibly nonlinear systems serves as input for an autoencoder, which then performs two tasks: (i) nonlinearly transforming and (ii) reducing this data onto a low-dimensional latent space. In this space, a linear pH system that satisfies the pH properties per construction is parameterized by the weights of a neural network. The mathematical requirements are met by defining the pH matrices through Cholesky factorizations. The neural networks that define the coordinate transformation and the pH system are identified in a joint optimization process to match the dynamics observed in the data while defining a linear pH system in the latent space. The learned, low-dimensional pH system can describe even nonlinear systems and is rapidly computable due to its small size. The method is exemplified by a parametric mass-spring-damper and a nonlinear pendulum example, as well as the high-dimensional model of a disc brake with linear thermoelastic behavior.
Keywords
autoencoder, port-hamiltonian systems, structure-preserving reduced-order modeling, system identification
Citation
- Journal: Computational Science and Engineering
- Year: 2025
- Volume: 2
- Issue: 1
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s44207-025-00007-2
BibTeX
@article{Rettberg_2025,
title={{Data-driven identification of latent port-Hamiltonian systems}},
volume={2},
ISSN={2948-1597},
DOI={10.1007/s44207-025-00007-2},
number={1},
journal={Computational Science and Engineering},
publisher={Springer Science and Business Media LLC},
author={Rettberg, Johannes and Kneifl, Jonas and Herb, Julius and Buchfink, Patrick and Fehr, Jörg and Haasdonk, Bernard},
year={2025}
}References
- Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440. https://doi.org/10.1038/s42254-021-00314- – 10.1038/s42254-021-00314-5
- van der Schaft A, Jeltsema D (2014) Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1(2):173–378. https://doi.org/10.1561/260000000 – 10.1561/2600000002
- Rettberg J, Wittwar D, Buchfink P, Brauchler A, Ziegler P, Fehr J, Haasdonk B (2023) Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar. Mathematical and Computer Modelling of Dynamical Systems 29(1):116–148. https://doi.org/10.1080/13873954.2023.217323 – 10.1080/13873954.2023.2173238
- Mehrmann V, Unger B (2023) Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32:395–515. https://doi.org/10.1017/s096249292200008 – 10.1017/s0962492922000083
- Brunton SL, Kutz JN (2022) Data-Driven Science and Engineerin – 10.1017/9781009089517
- Champion K, Lusch B, Kutz JN, Brunton SL (2019) Data-driven discovery of coordinates and governing equations. Proc Natl Acad Sci USA 116(45):22445–22451. https://doi.org/10.1073/pnas.190699511 – 10.1073/pnas.1906995116
- Bakarji J, Champion K, Nathan Kutz J, Brunton SL (2023) Discovering governing equations from partial measurements with deep delay autoencoders. Proc R Soc A 479(2276). https://doi.org/10.1098/rspa.2023.042 – 10.1098/rspa.2023.0422
- Åström KJ, Eykhoff P (1971) System identification—A survey. Automatica 7(2):123–162. https://doi.org/10.1016/0005-1098(71)90059- – 10.1016/0005-1098(71)90059-8
- Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4–27. https://doi.org/10.1109/72.8020 – 10.1109/72.80202
- Bongard J, Lipson H (2007) Automated reverse engineering of nonlinear dynamical systems. Proc Natl Acad Sci USA 104(24):9943–9948. https://doi.org/10.1073/pnas.060947610 – 10.1073/pnas.0609476104
- Schmidt M, Lipson H (2009) Distilling Free-Form Natural Laws from Experimental Data. Science 324(5923):81–85. https://doi.org/10.1126/science.116589 – 10.1126/science.1165893
- Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci USA 113(15):3932–3937. https://doi.org/10.1073/pnas.151738411 – 10.1073/pnas.1517384113
- Chen Z, Liu Y, Sun H (2021) Physics-informed learning of governing equations from scarce data. Nat Commun 12(1). https://doi.org/10.1038/s41467-021-26434- – 10.1038/s41467-021-26434-1
- Conti P, Kneifl J, Manzoni A, Frangi A, Fehr J, Brunton SL, Kutz JN (2024) VENI, VINDy, VICI: a generative reduced-order modeling framework with uncertainty quantificatio – 10.48550/arxiv.2405.20905
- Beckers T, Seidman J, Perdikaris P, Pappas GJ (2022) Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior. 2022 IEEE 61st Conference on Decision and Control (CDC) 1447–145 – 10.1109/cdc51059.2022.9992733
- Zaspel P, Günther M (2024) Data-driven identification of port-Hamiltonian DAE systems by Gaussian processe – 10.48550/arxiv.2406.18726
- Raissi M, Karniadakis GE (2018) Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of Computational Physics 357:125–141. https://doi.org/10.1016/j.jcp.2017.11.03 – 10.1016/j.jcp.2017.11.039
- Offen C (2024) Machine learning of continuous and discrete variational ODEs with convergence guarantee and uncertainty quantificatio – 10.48550/arxiv.2404.19626
- Lusch B, Kutz JN, Brunton SL (2018) Deep learning for universal linear embeddings of nonlinear dynamics. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-07210- – 10.1038/s41467-018-07210-0
- Brunton SL, Budišić M, Kaiser E, Kutz JN (2022) Modern Koopman Theory for Dynamical Systems. SIAM Rev 64(2):229–340. https://doi.org/10.1137/21m140124 – 10.1137/21m1401243
- Conti P, Gobat G, Fresca S, Manzoni A, Frangi A (2023) Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions. Computer Methods in Applied Mechanics and Engineering 411:116072. https://doi.org/10.1016/j.cma.2023.11607 – 10.1016/j.cma.2023.116072
- Kutz JN, Brunton SL (2022) Parsimony as the ultimate regularizer for physics-informed machine learning. Nonlinear Dyn 107(3):1801–1817. https://doi.org/10.1007/s11071-021-07118- – 10.1007/s11071-021-07118-3
- Brunton SL, Kutz JN (2023) Machine Learning for Partial Differential Equation – 10.48550/arxiv.2303.17078
- Schwerdtner P (2021) Port-Hamiltonian System Identification from Noisy Frequency Response Dat – 10.48550/arxiv.2106.11355
- Morandin R, Nicodemus J, Unger B (2023) Port-Hamiltonian Dynamic Mode Decomposition. SIAM J Sci Comput 45(4):A1690–A1710. https://doi.org/10.1137/22m149329 – 10.1137/22m149329x
- Cherifi K, Goyal P, Benner P (2022) A non-intrusive method to inferring linear port-Hamiltonian realizations using time-domain data. etna 56:102–116. https://doi.org/10.1553/etna_vol56s10 – 10.1553/etna_vol56s102
- Goyal P, Duff IP, Benner P (2023) Guaranteed Stable Quadratic Models and their applications in SINDy and Operator Inferenc – 10.48550/arxiv.2308.13819
- Peherstorfer B, Willcox K (2016) Data-driven operator inference for nonintrusive projection-based model reduction. Computer Methods in Applied Mechanics and Engineering 306:196–215. https://doi.org/10.1016/j.cma.2016.03.02 – 10.1016/j.cma.2016.03.025
- Desai SA, Mattheakis M, Sondak D, Protopapas P, Roberts SJ (2021) Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems. Phys Rev E 104(3). https://doi.org/10.1103/physreve.104.03431 – 10.1103/physreve.104.034312
- Salnikov V, Falaize A, Lozienko D (2023) Learning port-Hamiltonian Systems—Algorithms. Comput Math and Math Phys 63(1):126–134. https://doi.org/10.1134/s096554252301010 – 10.1134/s0965542523010104
- Cherifi K (2020) An overview on recent machine learning techniques for Port Hamiltonian systems. Physica D: Nonlinear Phenomena 411:132620. https://doi.org/10.1016/j.physd.2020.13262 – 10.1016/j.physd.2020.132620
- Eidnes S, Stasik AJ, Sterud C, Bøhn E, Riemer-Sørensen S (2023) Pseudo-Hamiltonian neural networks with state-dependent external forces. Physica D: Nonlinear Phenomena 446:133673. https://doi.org/10.1016/j.physd.2023.13367 – 10.1016/j.physd.2023.133673
- Yıldız S, Goyal P, Bendokat T, Benner P (2024) DATA-DRIVEN IDENTIFICATION OF QUADRATIC REPRESENTATIONS FOR NONLINEAR HAMILTONIAN SYSTEMS USING WEAKLY SYMPLECTIC LIFTINGS. J Mach Learn Model Comput 5(2):45–71. https://doi.org/10.1615/jmachlearnmodelcomput.202405281 – 10.1615/jmachlearnmodelcomput.2024052810
- Beattie C, Gugercin S, Mehrmann V (2022) Structure-Preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic Systems. Realization and Model Reduction of Dynamical Systems 235–25 – 10.1007/978-3-030-95157-3_13
- Gugercin S, Polyuga RV, Beattie C, van der Schaft A (2012) Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48(9):1963–1974. https://doi.org/10.1016/j.automatica.2012.05.05 – 10.1016/j.automatica.2012.05.052
- Breiten T, Unger B (2022) Passivity preserving model reduction via spectral factorization. Automatica 142:110368. https://doi.org/10.1016/j.automatica.2022.11036 – 10.1016/j.automatica.2022.110368
- Polyuga RV, van der Schaft A (2010) Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46(4):665–672. https://doi.org/10.1016/j.automatica.2010.01.01 – 10.1016/j.automatica.2010.01.018
- Ionescu TC, Astolfi A (2013) Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica 49(8):2424–2434. https://doi.org/10.1016/j.automatica.2013.05.00 – 10.1016/j.automatica.2013.05.006
- Egger H, Kugler T, Liljegren-Sailer B, Marheineke N, Mehrmann V (2018) On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM J Sci Comput 40(1):A331–A365. https://doi.org/10.1137/17m112530 – 10.1137/17m1125303
- Guiver C, Opmeer MR (2013) Error bounds in the gap metric for dissipative balanced approximations. Linear Algebra and its Applications 439(12):3659–3698. https://doi.org/10.1016/j.laa.2013.09.03 – 10.1016/j.laa.2013.09.032
- Breiten T, Morandin R, Schulze P (2022) Error bounds for port-Hamiltonian model and controller reduction based on system balancing. Computers & Mathematics with Applications 116:100–115. https://doi.org/10.1016/j.camwa.2021.07.02 – 10.1016/j.camwa.2021.07.022
- Borja P, Scherpen JMA, Fujimoto K (2023) Extended Balancing of Continuous LTI Systems: A Structure-Preserving Approach. IEEE Trans Automat Contr 68(1):257–271. https://doi.org/10.1109/tac.2021.313864 – 10.1109/tac.2021.3138645
- Polyuga RV, van der Schaft AJ (2012) Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters 61(3):412–421. https://doi.org/10.1016/j.sysconle.2011.12.00 – 10.1016/j.sysconle.2011.12.008
- Hauschild S-A, Marheineke N, Mehrmann V (2019) Model reduction techniques for linear constant coefficient port-Hamiltonian differential-algebraic system – 10.48550/arxiv.1901.10242
- Moser T, Lohmann B (2020) A New Riemannian Framework for Efficient ℋ2-Optimal Model Reduction of Port-Hamiltonian Systems. 2020 59th IEEE Conference on Decision and Control (CDC) 5043–504 – 10.1109/cdc42340.2020.9304134
- Schwerdtner P, Voigt M (2023) SOBMOR: Structured Optimization-Based Model Order Reduction. SIAM J Sci Comput 45(2):A502–A529. https://doi.org/10.1137/20m138023 – 10.1137/20m1380235
- Herkert R, Buchfink P, Haasdonk B, Rettberg J, Fehr J (2024) Randomized Symplectic Model Order Reduction for Hamiltonian Systems. Lecture Notes in Computer Science 99–10 – 10.1007/978-3-031-56208-2_9
- Beattie C, Gugercin S (2011) Structure-preserving model reduction for nonlinear port-Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 6564–656 – 10.1109/cdc.2011.6161504
- Chaturantabut S, Beattie C, Gugercin S (2016) Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM J Sci Comput 38(5):B837–B865. https://doi.org/10.1137/15m105508 – 10.1137/15m1055085
- Kawano Y, Scherpen JMA (2018) Structure Preserving Truncation of Nonlinear Port Hamiltonian Systems. IEEE Trans Automat Contr 63(12):4286–4293. https://doi.org/10.1109/tac.2018.281178 – 10.1109/tac.2018.2811787
- Sarkar A, Scherpen JMA (2023) Structure-preserving generalized balanced truncation for nonlinear port-Hamiltonian systems. Systems & Control Letters 174:105501. https://doi.org/10.1016/j.sysconle.2023.10550 – 10.1016/j.sysconle.2023.105501
- Liljegren-Sailer B, Marheineke N (2022) On Snapshot-Based Model Reduction Under Compatibility Conditions for a Nonlinear Flow Problem on Networks. J Sci Comput 92(2). https://doi.org/10.1007/s10915-022-01901- – 10.1007/s10915-022-01901-z
- Schulze P (2023) Energy-based model reduction of transport-dominated phenomena. Technische Universität Berlin. https://doi.org/10.14279/DEPOSITONCE-1784 – 10.14279/depositonce-17843
- Schulze P (2023) Structure-preserving model reduction for port-Hamiltonian systems based on separable nonlinear approximation ansatzes. Front Appl Math Stat 9. https://doi.org/10.3389/fams.2023.116025 – 10.3389/fams.2023.1160250
- Lepri M, Bacciu D, Santina CD (2024) Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems. IEEE Control Syst Lett 8:133–138. https://doi.org/10.1109/lcsys.2023.334428 – 10.1109/lcsys.2023.3344286
- Kashima K (2016) Nonlinear model reduction by deep autoencoder of noise response data. 2016 IEEE 55th Conference on Decision and Control (CDC – 10.1109/cdc.2016.7799153
- Hartman D, Mestha LK (2017) A deep learning framework for model reduction of dynamical systems. 2017 IEEE Conference on Control Technology and Applications (CCTA – 10.1109/ccta.2017.8062736
- Lee K, Carlberg KT (2020) Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. Journal of Computational Physics 404:108973. https://doi.org/10.1016/j.jcp.2019.10897 – 10.1016/j.jcp.2019.108973
- Kim Y, Choi Y, Widemann D, Zohdi T (2022) A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder. Journal of Computational Physics 451:110841. https://doi.org/10.1016/j.jcp.2021.11084 – 10.1016/j.jcp.2021.110841
- Buchfink P, Glas S, Haasdonk B (2023) Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds and Approximation with Weakly Symplectic Autoencoder. SIAM J Sci Comput 45(2):A289–A311. https://doi.org/10.1137/21m146665 – 10.1137/21m1466657
- Brantner B, Kraus M (2023) Symplectic Autoencoders for Model Reduction of Hamiltonian System – 10.48550/arxiv.2312.10004
- Otto SE, Macchio GR, Rowley CW (2023) Learning nonlinear projections for reduced-order modeling of dynamical systems using constrained autoencoders. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(11). https://doi.org/10.1063/5.016968 – 10.1063/5.0169688
- Falcó A, Sánchez F (2018) Model order reduction for dynamical systems: A geometric approach. Comptes Rendus Mécanique 346(7):515–523. https://doi.org/10.1016/j.crme.2018.04.01 – 10.1016/j.crme.2018.04.010
- Buchfink P, Glas S, Haasdonk B, Unger B (2024) Model reduction on manifolds: A differential geometric framework. Physica D: Nonlinear Phenomena 468:134299. https://doi.org/10.1016/j.physd.2024.13429 – 10.1016/j.physd.2024.134299
- Fresca S, Dede’ L, Manzoni A (2021) A Comprehensive Deep Learning-Based Approach to Reduced Order Modeling of Nonlinear Time-Dependent Parametrized PDEs. J Sci Comput 87(2). https://doi.org/10.1007/s10915-021-01462- – 10.1007/s10915-021-01462-7
- Fresca S, Manzoni A (2022) POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition. Computer Methods in Applied Mechanics and Engineering 388:114181. https://doi.org/10.1016/j.cma.2021.11418 – 10.1016/j.cma.2021.114181
- Côte R, Franck E, Navoret L, Steimer G, Vigon V (2023) Hamiltonian reduction using a convolutional auto-encoder coupled to an Hamiltonian neural networ – 10.48550/arxiv.2311.06104
- Kneifl J, Rosin D, Avci O, Röhrle O, Fehr J (2023) Low-dimensional data-based surrogate model of a continuum-mechanical musculoskeletal system based on non-intrusive model order reduction. Arch Appl Mech 93(9):3637–3663. https://doi.org/10.1007/s00419-023-02458- – 10.1007/s00419-023-02458-5
- Kneifl J, Fehr J, Brunton SL, Kutz JN (2024) Multi-hierarchical surrogate learning for explicit structural dynamical systems using graph convolutional neural networks. Comput Mech 75(3):1115–1135. https://doi.org/10.1007/s00466-024-02553- – 10.1007/s00466-024-02553-6
- Pichi F, Moya B, Hesthaven JS (2024) A graph convolutional autoencoder approach to model order reduction for parametrized PDEs. Journal of Computational Physics 501:112762. https://doi.org/10.1016/j.jcp.2024.11276 – 10.1016/j.jcp.2024.112762
- Gruber A, Gunzburger M, Ju L, Wang Z (2022) A comparison of neural network architectures for data-driven reduced-order modeling. Computer Methods in Applied Mechanics and Engineering 393:114764. https://doi.org/10.1016/j.cma.2022.11476 – 10.1016/j.cma.2022.114764
- Hesthaven JS, Ubbiali S (2018) Non-intrusive reduced order modeling of nonlinear problems using neural networks. Journal of Computational Physics 363:55–78. https://doi.org/10.1016/j.jcp.2018.02.03 – 10.1016/j.jcp.2018.02.037
- Sharma H, Wang Z, Kramer B (2022) Hamiltonian operator inference: Physics-preserving learning of reduced-order models for canonical Hamiltonian systems. Physica D: Nonlinear Phenomena 431:133122. https://doi.org/10.1016/j.physd.2021.13312 – 10.1016/j.physd.2021.133122
- Sharma H, Mu H, Buchfink P, Geelen R, Glas S, Kramer B (2023) Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds. Computer Methods in Applied Mechanics and Engineering 417:116402. https://doi.org/10.1016/j.cma.2023.11640 – 10.1016/j.cma.2023.116402
- Duindam V, Macchelli A, Stramigioli S, Bruyninckx H (2009) Modeling and Control of Complex Physical Systems. Springer Berlin Heidelber – 10.1007/978-3-642-03196-0
- van der Schaft A (2020) Port-Hamiltonian Modeling for Control. Annu Rev Control Robot Auton Syst 3(1):393–416. https://doi.org/10.1146/annurev-control-081219-09225 – 10.1146/annurev-control-081219-092250
- Ortega R, García-Canseco E (2004) Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10(5):432–450. https://doi.org/10.3166/ejc.10.432-45 – 10.3166/ejc.10.432-450
- Gillis N, Mehrmann V, Sharma P (2018) Computing the nearest stable matrix pairs. Numerical Linear Algebra App 25(5). https://doi.org/10.1002/nla.215 – 10.1002/nla.2153
- Gillis N, Sharma P (2017) On computing the distance to stability for matrices using linear dissipative Hamiltonian systems. Automatica 85:113–121. https://doi.org/10.1016/j.automatica.2017.07.04 – 10.1016/j.automatica.2017.07.047
- Meyer KR, Offin DC (2017) Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer International Publishin – 10.1007/978-3-319-53691-0
- Kingma DP, Ba J (2014) Adam: A Method for Stochastic Optimizatio – 10.48550/arxiv.1412.6980
- Buchfink P, Glas S, Haasdonk B (2023) Approximation Bounds for Model Reduction on Polynomially Mapped Manifold – 10.48550/arxiv.2312.00724
- Kotyczka P, Lefèvre L (2019) Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters 133:104530. https://doi.org/10.1016/j.sysconle.2019.10453 – 10.1016/j.sysconle.2019.104530
- Giftthaler M, Wolf T, Panzer HKF, Lohmann B (2014) Parametric Model Order Reduction of Port-Hamiltonian Systems by Matrix Interpolation. at - Automatisierungstechnik 62(9):619–628. https://doi.org/10.1515/auto-2013-107 – 10.1515/auto-2013-1072
- Castaños F, Gromov D, Hayward V, Michalska H (2013) Implicit and explicit representations of continuous-time port-Hamiltonian systems. Systems & Control Letters 62(4):324–330. https://doi.org/10.1016/j.sysconle.2013.01.00 – 10.1016/j.sysconle.2013.01.007
- Kneifl J, Rettberg J, Herb J (2024) ApHIN - Autoencoder-based port-Hamiltonian Identification Networks (Software Package – 10.18419/darus-4446
- Kneifl J, Rettberg J, Fehr J (2024) Coupled thermo-mechanical simulation results of a finite element discbrak – 10.18419/darus-4418
- Peng L, Mohseni K (2016) Symplectic Model Reduction of Hamiltonian Systems. SIAM J Sci Comput 38(1):A1–A27. https://doi.org/10.1137/14097892 – 10.1137/140978922