On computing the distance to stability for matrices using linear dissipative Hamiltonian systems
Authors
Abstract
In this paper, we consider the problem of computing the nearest stable matrix to an unstable one. We propose new algorithms to solve this problem based on a reformulation using linear dissipative Hamiltonian systems: we show that a matrix A is stable if and only if it can be written as A = ( J − R ) Q , where J = − J T , R ⪰ 0 and Q ≻ 0 (that is, R is positive semidefinite and Q is positive definite). This reformulation results in an equivalent optimization problem with a simple convex feasible set. We propose three strategies to solve the problem in variables ( J , R , Q ) : (i) a block coordinate descent method, (ii) a projected gradient descent method, and (iii) a fast gradient method inspired from smooth convex optimization. These methods require O ( n 3 ) operations per iteration, where n is the size of A . We show the effectiveness of the fast gradient method compared to the other approaches and to several state-of-the-art algorithms.
Keywords
Dissipative Hamiltonian systems; Distance to stability; Convex optimization
Citation
- Journal: Automatica
- Year: 2017
- Volume: 85
- Issue:
- Pages: 113–121
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2017.07.047
BibTeX
@article{Gillis_2017,
title={{On computing the distance to stability for matrices using linear dissipative Hamiltonian systems}},
volume={85},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2017.07.047},
journal={Automatica},
publisher={Elsevier BV},
author={Gillis, Nicolas and Sharma, Punit},
year={2017},
pages={113--121}
}
References
- Alam, R., Bora, S., Karow, M., Mehrmann, V. & Moro, J. Perturbation Theory for Hamiltonian Matrices and the Distance to Bounded-Realness. SIAM J. Matrix Anal. & Appl. 32, 484–514 (2011) – 10.1137/10079464x
- Boyd, (1994)
- Burke, J. V., Henrion, D., Lewis, A. S. & Overton, M. L. HIFOO - A MATLAB PACKAGE FOR FIXED-ORDER CONTROLLER DESIGN AND H OPTIMIZATION. IFAC Proceedings Volumes 39, 339–344 (2006) – 10.3182/20060705-3-fr-2907.00059
- Burke, J. V., Henrion, D., Lewis, A. S. & Overton, M. L. Stabilization via Nonsmooth, Nonconvex Optimization. IEEE Trans. Automat. Contr. 51, 1760–1769 (2006) – 10.1109/tac.2006.884944
- Byers, R. A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices. SIAM J. Sci. and Stat. Comput. 9, 875–881 (1988) – 10.1137/0909059
- D’haene, T., Pintelon, R. & Vandersteen, G. An Iterative Method to Stabilize a Transfer Function in the<tex>$s$</tex>- and<tex>$z$</tex>-Domains. IEEE Trans. Instrum. Meas. 55, 1192–1196 (2006) – 10.1109/tim.2006.876567
- Ghadimi, S. & Lan, G. Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Math. Program. 156, 59–99 (2015) – 10.1007/s10107-015-0871-8
- Golo, Hamiltonian formulation of bond graphs. (2003)
- Grippo, L. & Sciandrone, M. On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Operations Research Letters 26, 127–136 (2000) – 10.1016/s0167-6377(99)00074-7
- Higham, N. J. Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications 103, 103–118 (1988) – 10.1016/0024-3795(88)90223-6
- Higham, (1988)
- Hinrichsen, D. & Pritchard, A. J. Stability radii of linear systems. Systems & Control Letters 7, 1–10 (1986) – 10.1016/0167-6911(86)90094-0
- Horn, (1985)
- Lancaster, (1985)
- Mehl, C., Mehrmann, V. & Sharma, P. Stability Radii for Linear Hamiltonian Systems with Dissipation Under Structure-Preserving Perturbations. SIAM J. Matrix Anal. & Appl. 37, 1625–1654 (2016) – 10.1137/16m1067330
- Mehl, C., Mehrmann, V. & Sharma, P. Stability radii for real linear Hamiltonian systems with perturbed dissipation. Bit Numer Math 57, 811–843 (2017) – 10.1007/s10543-017-0654-0
- Moses, R. L. & Liu, D. Determining the closest stable polynomial to an unstable one. IEEE Trans. Signal Process. 39, 901–906 (1991) – 10.1109/78.80912
- Nesterov, (2004)
- Orbandexivry, F.-X., Nesterov, Y. & Van Dooren, P. Nearest stable system using successive convex approximations. Automatica 49, 1195–1203 (2013) – 10.1016/j.automatica.2013.01.053
- Ostrowski, (1960)
- Packard, A. & Doyle, J. The complex structured singular value. Automatica 29, 71–109 (1993) – 10.1016/0005-1098(93)90175-s
- Sturm, J. F. Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optimization Methods and Software 11, 625–653 (1999) – 10.1080/10556789908805766
- Toh, K. C., Todd, M. J. & Tütüncü, R. H. SDPT3 — A Matlab software package for semidefinite programming, Version 1.3. Optimization Methods and Software 11, 545–581 (1999) – 10.1080/10556789908805762
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM J. Control Optim. 51, 906–937 (2013) – 10.1137/110840091
- Wilkinson, Sensitivity of eigenvalues. Utilitas Mathematica (1984)
- Wright, S. J. Coordinate descent algorithms. Math. Program. 151, 3–34 (2015) – 10.1007/s10107-015-0892-3
- Zhou, T. On Nonsingularity Verification of Uncertain Matrices Over a Quadratically Constrained Set. IEEE Trans. Automat. Contr. 56, 2206–2212 (2011) – 10.1109/tac.2011.2154450