Structure-preserving model reduction for nonlinear port-Hamiltonian systems
Authors
Christopher Beattie, Serkan Gugercin
Abstract
Port-Hamiltonian systems result from port-based network modeling of physical systems and constitute an important class of passive nonlinear state-space systems. In this paper, we develop a framework for model reduction of large-scale multi-input/multi-output nonlinear port-Hamiltonian systems that retains the port-Hamiltonian structure in the reduced order models. Within this framework, reduced order models are determined by the selection of two families of approximating subspaces. We consider two approaches deriving from a) a POD-based selection of subspaces, and b) an an ℋ2-based quasi-optimal selection of subspaces. We compare performance of the reduced order models on a nonlinear lossy LC ladder network.
Citation
- Journal: IEEE Conference on Decision and Control and European Control Conference
- Year: 2011
- Volume:
- Issue:
- Pages: 6564–6569
- Publisher: IEEE
- DOI: 10.1109/cdc.2011.6161504
BibTeX
@inproceedings{Beattie_2011,
title={{Structure-preserving model reduction for nonlinear port-Hamiltonian systems}},
DOI={10.1109/cdc.2011.6161504},
booktitle={{IEEE Conference on Decision and Control and European Control Conference}},
publisher={IEEE},
author={Beattie, Christopher and Gugercin, Serkan},
year={2011},
pages={6564--6569}
}
References
- zwart, Distributed-parameter port-hamiltonian systems. CIMPA (2009)
- Scherpen, J. M. A. & van der Schaft, A. J. A structure preserving minimal representation of a nonlinear port-Hamiltonian system. 2008 47th IEEE Conference on Decision and Control 4885–4890 (2008) doi:10.1109/cdc.2008.4739266 – 10.1109/cdc.2008.4739266
- van der schaft, Port-hamiltonian systems: An introductory survey. Proceedings of the International Congress of Mathematicians (2006)
- Fujimoto, K. & Scherpen, J. M. A. Balanced Realization and Model Order Reduction for Nonlinear Systems Based on Singular Value Analysis. SIAM J. Control Optim. 48, 4591–4623 (2010) – 10.1137/070695332
- Fujimoto, K. & Kajiura, H. Balanced realization and model reduction of port-Hamiltonian systems. 2007 American Control Conference 930–934 (2007) doi:10.1109/acc.2007.4282653 – 10.1109/acc.2007.4282653
- Chaturantabut, S. & Sorensen, D. C. Nonlinear Model Reduction via Discrete Empirical Interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010) – 10.1137/090766498
- Polyuga, R. V. & van der Schaft, A. Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos. IEEE Trans. Automat. Contr. 56, 1458–1462 (2011) – 10.1109/tac.2011.2128650
- Kunisch, K. & Volkwein, S. Optimal snapshot location for computing POD basis functions. ESAIM: M2AN 44, 509–529 (2010) – 10.1051/m2an/2010011
- gugercin, Structure-preserving tangential-interpolation based model reduction of port-hamiltonian systems. Automatica (2011)
- gugercin, Interpolation-based H2 model reduction for port-hamiltonian systems. Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference (2009)
- Gugercin, S., Antoulas, A. C. & Beattie, C. $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems. SIAM J. Matrix Anal. & Appl. 30, 609–638 (2008) – 10.1137/060666123
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46, 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- polyuga, Model Reduction of Port-Hamiltonian Systems (2010)