Structure-preserving generalized balanced truncation for nonlinear port-Hamiltonian systems
Authors
Arijit Sarkar, Jacquelien M.A. Scherpen
Abstract
In this paper, we introduce the notions of generalized controllability and observability functions for stable continuous-time nonlinear systems. We propose a balanced realization for nonlinear port-Hamiltonian systems in which the generalized energy functions are balanced and at the same time the Hamiltonian of the corresponding system is in diagonal form. The reduced order model obtained by truncation of states in the balanced coordinates preserves the port-Hamiltonian structure. For a special case of nonlinear port-Hamiltonian systems with quadratic Hamiltonian, the approach of generalized balanced truncation boils down to a feasibility problem of matrix inequalities. We illustrate the results with an example of a mass–spring–damper system with Coulomb friction.
Keywords
Balancing; Generalized controllability function and generalized observability function; Port-Hamiltonian systems; Structure-preserving model reduction; Nonlinear systems
Citation
- Journal: Systems & Control Letters
- Year: 2023
- Volume: 174
- Issue:
- Pages: 105501
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2023.105501
BibTeX
@article{Sarkar_2023,
title={{Structure-preserving generalized balanced truncation for nonlinear port-Hamiltonian systems}},
volume={174},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2023.105501},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Sarkar, Arijit and Scherpen, Jacquelien M.A.},
year={2023},
pages={105501}
}
References
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control vol. 26 17–32 (1981) – 10.1109/tac.1981.1102568
- GLOVER, K. All optimal Hankel-norm approximations of linear multivariable systems and theirL,∞-error bounds†. International Journal of Control vol. 39 1115–1193 (1984) – 10.1080/00207178408933239
- Antoulas, (2005)
- Hinrichsen, D. & Pritchard, A. J. An improved error estimate for reduced-order models of discrete-time systems. IEEE Transactions on Automatic Control vol. 35 317–320 (1990) – 10.1109/9.50345
- Cheng, X., Scherpen, J. M. A. & Besselink, B. Balanced truncation of networked linear passive systems. Automatica vol. 104 17–25 (2019) – 10.1016/j.automatica.2019.02.045
- Scherpen, J. M. A. Balancing for nonlinear systems. Systems & Control Letters vol. 21 143–153 (1993) – 10.1016/0167-6911(93)90117-o
- Fujimoto, K. & Scherpen, J. M. A. Nonlinear input-normal realizations based on the differential eigenstructure of Hankel operators. IEEE Transactions on Automatic Control vol. 50 2–18 (2005) – 10.1109/tac.2004.840476
- Fujimoto, K. & Scherpen, J. M. A. Balanced Realization and Model Order Reduction for Nonlinear Systems Based on Singular Value Analysis. SIAM Journal on Control and Optimization vol. 48 4591–4623 (2010) – 10.1137/070695332
- Fujimoto, K. & Tsubakino, D. Computation of nonlinear balanced realization and model reduction based on Taylor series expansion. Systems & Control Letters vol. 57 283–289 (2008) – 10.1016/j.sysconle.2007.08.015
- Krener, Reduced order modeling of nonlinear control systems. (2008)
- Ionescu, T. C., Fujimoto, K. & Scherpen, J. M. A. Dissipativity preserving balancing for nonlinear systems — A Hankel operator approach. Systems & Control Letters vol. 59 180–194 (2010) – 10.1016/j.sysconle.2010.01.003
- Verriest, Flow balancing nonlinear systems. (2000)
- Besselink, B., van de Wouw, N., Scherpen, J. M. A. & Nijmeijer, H. Model Reduction for Nonlinear Systems by Incremental Balanced Truncation. IEEE Transactions on Automatic Control vol. 59 2739–2753 (2014) – 10.1109/tac.2014.2326548
- Kawano, Y. & Scherpen, J. M. A. Model Reduction by Differential Balancing Based on Nonlinear Hankel Operators. IEEE Transactions on Automatic Control vol. 62 3293–3308 (2017) – 10.1109/tac.2016.2628201
- Kawano, Model reduction by generalized differential balancing. (2015)
- Sarkar, A. & Scherpen, J. M. A. Extended Differential Balancing for Nonlinear Dynamical Systems. IEEE Control Systems Letters vol. 6 3170–3175 (2022) – 10.1109/lcsys.2022.3183528
- Maschke, Port-controlled Hamiltonian systems : Modeling origins and systemstheoretic properties. (1992)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, (2017)
- Lopezlena, Energy-Storage balanced reduction of port-Hamiltonian systems. (2003)
- Fujimoto, Balanced realization and model order reduction for port-Hamiltonian systems. J. Syst. Des. Dyn. (2008)
- Kawano, Y. & Scherpen, J. M. A. Structure Preserving Truncation of Nonlinear Port Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 4286–4293 (2018) – 10.1109/tac.2018.2811787
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Ionescu, Moment matching for nonlinear port-Hamiltonian and gradient systems. (2013)
- Ionescu, T. C. & Astolfi, A. Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica vol. 49 2424–2434 (2013) – 10.1016/j.automatica.2013.05.006
- Scherpen, A structure-preserving minimal representation of a nonlinear port-Hamiltonian system. (2008)
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Borja, Extended balancing of continuous-time LTI systems : a structure-preserving approach. IEEE Trans. Autom. Control (2022)
- Dullerud, (2000)
- Uhlig, F. A recurring theorem about pairs of quadratic forms and extensions: a survey. Linear Algebra and its Applications vol. 25 219–237 (1979) – 10.1016/0024-3795(79)90020-x
- Kato, (1982)
- Novikov, M. A. Simultaneous diagonalization of three real symmetric matrices. Russian Mathematics vol. 58 59–69 (2014) – 10.3103/s1066369x1412007x
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control vol. 10 451–468 (2004) – 10.3166/ejc.10.451-468
- Boyd, (1994)
- Sturm, J. F. Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optimization Methods and Software vol. 11 625–653 (1999) – 10.1080/10556789908805766
- Sarkar, (2022)
- Milnor, (1963)