A New Riemannian Framework for Efficient ℋ<sub>2</sub>-Optimal Model Reduction of Port-Hamiltonian Systems
Authors
Abstract
We present a new framework for ℋ2-optimal model reduction of linear port-Hamiltonian systems. The approach retains structural properties of the original system, such as passivity, and is based on the efficient pole-residue formulation of the ℋ2-error norm. This makes Riemannian optimization computationally feasible for large-scale dynamical systems as well, which is supported by a numerical example.
Citation
- Journal: 2020 59th IEEE Conference on Decision and Control (CDC)
- Year: 2020
- Volume:
- Issue:
- Pages: 5043–5049
- Publisher: IEEE
- DOI: 10.1109/cdc42340.2020.9304134
BibTeX
@inproceedings{Moser_2020,
title={{A New Riemannian Framework for Efficient ℋ2-Optimal Model Reduction of Port-Hamiltonian Systems}},
DOI={10.1109/cdc42340.2020.9304134},
booktitle={{2020 59th IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Moser, Tim and Lohmann, Boris},
year={2020},
pages={5043--5049}
}
References
- Gugercin, S., Antoulas, A. C. & Beattie, C. $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems. SIAM J. Matrix Anal. & Appl. 30, 609–638 (2008) – 10.1137/060666123
- Spanos, J. T., Milman, M. H. & Mingori, D. L. A new algorithm for L2 optimal model reduction. Automatica 28, 897–909 (1992) – 10.1016/0005-1098(92)90143-4
- Wei-Yong Yan & Lam, J. An approximate approach to H/sup 2/ optimal model reduction. IEEE Trans. Automat. Contr. 44, 1341–1358 (1999) – 10.1109/9.774107
- Sato, H. & Sato, K. Riemannian trust-region methods for H2optimal model reduction. 2015 54th IEEE Conference on Decision and Control (CDC) 4648–4655 (2015) doi:10.1109/cdc.2015.7402944 – 10.1109/cdc.2015.7402944
- Simoncini, V. Computational Methods for Linear Matrix Equations. SIAM Rev. 58, 377–441 (2016) – 10.1137/130912839
- Sato, K. Riemannian optimal model reduction of linear port-Hamiltonian systems. Automatica 93, 428–434 (2018) – 10.1016/j.automatica.2018.03.051
- Beattie, C. A. & Gugercin, S. Krylov-based minimization for optimal H<inf>2</inf> model reduction. 2007 46th IEEE Conference on Decision and Control 4385–4390 (2007) doi:10.1109/cdc.2007.4434939 – 10.1109/cdc.2007.4434939
- beattie, A trust region method for optimal ${\mathcal{H}_2}$ model reduction. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference (2009)
- Flagg, G., Beattie, C. & Gugercin, S. Convergence of the Iterative Rational Krylov Algorithm. Systems & Control Letters 61, 688–691 (2012) – 10.1016/j.sysconle.2012.03.005
- Krajewski, W., Lepschy, A., Redivo-Zaglia, M. & Viaro, U. A program for solving the L2 reduced-order model problem with fixed denominator degree. Numer Algor 9, 355–377 (1995) – 10.1007/bf02141596
- Boumal, N. Riemannian Trust Regions with Finite-Difference Hessian Approximations are Globally Convergent. Lecture Notes in Computer Science 467–475 (2015) doi:10.1007/978-3-319-25040-3_50 – 10.1007/978-3-319-25040-3_50
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters 61, 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Jiang, Y.-L. & Xu, K.-L. Model Order Reduction of Port-Hamiltonian Systems by Riemannian Modified Fletcher–Reeves Scheme. IEEE Trans. Circuits Syst. II 66, 1825–1829 (2019) – 10.1109/tcsii.2019.2895872
- kotyczka, Numerical Methods for Distributed Parameter Port-Hamiltonian Systems (2019)
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48, 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- boumal, Manopt, a Matlab toolbox for optimization on manifolds. Journal of Machine Learning Research (2014)
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control 16, 401–406 (2010) – 10.3166/ejc.16.401-406
- Hyland, D. & Bernstein, D. The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton, and Moore. IEEE Trans. Automat. Contr. 30, 1201–1211 (1985) – 10.1109/tac.1985.1103865
- Wilson, D. A. Optimum solution of model-reduction problem. Proc. Inst. Electr. Eng. UK 117, 1161 (1970) – 10.1049/piee.1970.0227
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Meier, L. & Luenberger, D. Approximation of linear constant systems. IEEE Trans. Automat. Contr. 12, 585–588 (1967) – 10.1109/tac.1967.1098680
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46, 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- absil, Optimization Algorithms on Matrix Manifolds (2007)
- magnus, Matrix Differential Calculus with Applications in Statistics and Econometrics (Wiley Series in Probability and Statistics Texts and References Section) (1999)
- bhatia, Positive Definite Matrices (2015)
- Lang, S. Fundamentals of Differential Geometry. Graduate Texts in Mathematics (Springer New York, 1999). doi:10.1007/978-1-4612-0541-8 – 10.1007/978-1-4612-0541-8
- Sato, K. & Sato, H. Structure-Preserving $H^2$ Optimal Model Reduction Based on the Riemannian Trust-Region Method. IEEE Trans. Automat. Contr. 63, 505–512 (2018) – 10.1109/tac.2017.2723259
- jeuris, A survey and comparison of contemporary algorithms for computing the matrix geometric mean. Electronic Transactions on Numerical Analysis (2012)