Nonlinear Hamiltonian Systems Under Sampling
Authors
Salvatore Monaco, Dorothee Normand-Cyrot, Mattia Mattioni, Alessio Moreschini
Abstract
This article investigates the transformation of Hamiltonian structures under sampling. It is shown that the exact sampled equivalent model associated to a given port-Hamiltonian continuous-time dynamics exhibits a discrete-time representation in terms of the discrete gradient, with the same energy function but modified damping and interconnection matrices. By construction, the proposed sampled-data dynamics guarantees exact matching of both the state evolutions and the energy-balance at all sampling instants. Its generalization to port-controlled Hamiltonian dynamics leads to characterize a new power conjugate output so recovering the concept of average passivation. On these bases, energy-management control strategies can be proposed. An energetic interpretation of the approach is confirmed by its formulation in the Dirac formalism. Two classical examples are worked out to validate the proposed sampled-data modeling in a comparative way with the literature.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2022
- Volume: 67
- Issue: 9
- Pages: 4598–4613
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2022.3164985
BibTeX
@article{Monaco_2022,
title={{Nonlinear Hamiltonian Systems Under Sampling}},
volume={67},
ISSN={2334-3303},
DOI={10.1109/tac.2022.3164985},
number={9},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Monaco, Salvatore and Normand-Cyrot, Dorothee and Mattioni, Mattia and Moreschini, Alessio},
year={2022},
pages={4598--4613}
}
References
- Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Astolfi, A., Ortega, R. & Sepulchre, R. Passivity-based Control of Non-linear Systems. Control of Complex Systems 39–75 (2001) doi:10.1007/978-1-4471-0349-3_3 – 10.1007/978-1-4471-0349-3_3
- Brogliato, B., Lozano, R., Maschke, B. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer International Publishing, 2020). doi:10.1007/978-3-030-19420-8 – 10.1007/978-3-030-19420-8
- Borja, P., Ortega, R. & Scherpen, J. M. A. New Results on Stabilization of Port-Hamiltonian Systems via PID Passivity-Based Control. IEEE Transactions on Automatic Control vol. 66 625–636 (2021) – 10.1109/tac.2020.2986731
- van der Schaft, A. Port-Hamiltonian Modeling for Control. Annual Review of Control, Robotics, and Autonomous Systems vol. 3 393–416 (2020) – 10.1146/annurev-control-081219-092250
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Talasila, V., Clemente-Gallardo, J. & Schaft, A. J. van der. Geometry and Hamiltonian mechanics on discrete spaces. Journal of Physics A: Mathematical and General vol. 37 9705–9734 (2004) – 10.1088/0305-4470/37/41/008
- Talasila, V., Clemente-Gallardo, J. & van der Schaft, A. J. Discrete port-Hamiltonian systems. Systems & Control Letters vol. 55 478–486 (2006) – 10.1016/j.sysconle.2005.10.001
- Šešlija, M., Scherpen, J. M. A. & van der Schaft, A. Port-Hamiltonian systems on discrete manifolds. IFAC Proceedings Volumes vol. 45 774–779 (2012) – 10.3182/20120215-3-at-3016.00137
- Itoh, T. & Abe, K. Hamiltonian-conserving discrete canonical equations based on variational difference quotients. Journal of Computational Physics vol. 76 85–102 (1988) – 10.1016/0021-9991(88)90132-5
- Gonzalez, O. Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science vol. 6 449–467 (1996) – 10.1007/bf02440162
- McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 357 1021–1045 (1999) – 10.1098/rsta.1999.0363
- Hairer, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006)
- Quispel, G. R. W. & McLaren, D. I. A new class of energy-preserving numerical integration methods. Journal of Physics A: Mathematical and Theoretical vol. 41 045206 (2008) – 10.1088/1751-8113/41/4/045206
- Laila, D. S. & Astolfi, A. Construction of discrete-time models for port-controlled Hamiltonian systems with applications. Systems & Control Letters vol. 55 673–680 (2006) – 10.1016/j.sysconle.2005.09.012
- Aoues, S., Di Loreto, M., Eberard, D. & Marquis-Favre, W. Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability. Systems & Control Letters vol. 110 9–14 (2017) – 10.1016/j.sysconle.2017.10.003
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Discrete port-controlled Hamiltonian dynamics and average passivation. 2019 IEEE 58th Conference on Decision and Control (CDC) 1430–1435 (2019) doi:10.1109/cdc40024.2019.9029809 – 10.1109/cdc40024.2019.9029809
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Castaos, Discrete-time models for implicit port-Hamiltonian systems. (2015)
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Stramigioli, S., Secchi, C., van der Schaft, A. J. & Fantuzzi, C. Sampled data systems passivity and discrete port-Hamiltonian systems. IEEE Transactions on Robotics vol. 21 574–587 (2005) – 10.1109/tro.2004.842330
- Bansal, H., Zwart, H., Iapichino, L., Schilders, W. & van de Wouw, N. Port-Hamiltonian modelling of fluid dynamics models with variable cross-section. IFAC-PapersOnLine vol. 54 365–372 (2021) – 10.1016/j.ifacol.2021.06.095
- Bansal, H., Weiland, S., Iapichino, L., Schilders, W. H. A. & van de Wouw, N. Structure-preserving Spatial Discretization of a Two-Fluid Model. 2020 59th IEEE Conference on Decision and Control (CDC) 5062–5067 (2020) doi:10.1109/cdc42340.2020.9304252 – 10.1109/cdc42340.2020.9304252
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Laila, D. S. & Astolfi, A. Discrete-time IDA-PBC design for underactuated Hamiltonian control systems. 2006 American Control Conference 6 pp. (2006) doi:10.1109/acc.2006.1655352 – 10.1109/acc.2006.1655352
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Monaco, S., Normand-Cyrot, D. & Califano, C. From Chronological Calculus to Exponential Representations of Continuous and Discrete-Time Dynamics: A Lie-Algebraic Approach. IEEE Transactions on Automatic Control vol. 52 2227–2241 (2007) – 10.1109/tac.2007.902734
- Monaco, S. & Normand-Cyrot, D. Nonlinear average passivity and stabilizing controllers in discrete time. Systems & Control Letters vol. 60 431–439 (2011) – 10.1016/j.sysconle.2011.03.010
- Moreschini, A., Monaco, S. & Normand-Cyrot, D. Gradient and Hamiltonian dynamics under sampling. IFAC-PapersOnLine vol. 52 472–477 (2019) – 10.1016/j.ifacol.2019.12.006
- Grbner, Contributions to the Method of Lie Series (1967)
- Gören-Sümer, L. & Yalçιn, Y. Gradient Based Discrete-Time Modeling and Control of Hamiltonian Systems. IFAC Proceedings Volumes vol. 41 212–217 (2008) – 10.3182/20080706-5-kr-1001.00036
- YALÇIN, Y., GÖREN SÜMER, L. & KURTULAN, S. Discrete-time modeling of Hamiltonian systems. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES vol. 23 149–170 (2015) – 10.3906/elk-1212-23
- Aoues, S., Eberard, D. & Marquis-Favre, W. Discrete IDA-PBC design for 2D port-Hamiltonian systems. IFAC Proceedings Volumes vol. 46 134–139 (2013) – 10.3182/20130904-3-fr-2041.00088
- Laila, D. S. & Astolfi, A. DISCRETE-TIME IDA-PBC DESIGN FOR SEPARABLE HAMILTONIAN SYSTEMS. IFAC Proceedings Volumes vol. 38 838–843 (2005) – 10.3182/20050703-6-cz-1902.00540
- Moreschini, A., Monaco, S. & Normand-Cyrot, D. Dirac Structures for a Class of Port-Hamiltonian Systems in Discrete Time. IEEE Transactions on Automatic Control vol. 69 1999–2006 (2024) – 10.1109/tac.2023.3313327
- Sümer, L. G. & Yalçin, Y. A Direct Discrete-time IDA-PBC Design Method for a Class of Underactuated Hamiltonian Systems. IFAC Proceedings Volumes vol. 44 13456–13461 (2011) – 10.3182/20110828-6-it-1002.01187
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Stabilization of Discrete Port-Hamiltonian Dynamics via Interconnection and Damping Assignment. IEEE Control Systems Letters vol. 5 103–108 (2021) – 10.1109/lcsys.2020.3000705
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006