Structure-preserving Spatial Discretization of a Two-Fluid Model
Authors
H. Bansal, S. Weiland, L. Iapichino, W.H.A. Schilders, N. van de Wouw
Abstract
We present a structure-preserving spatial discretization method for infinite-dimensional non-linear port-Hamiltonian representations of a commonly used one-dimensional two-phase flow model: the Two-Fluid Model. We introduce the port-Hamiltonian representation of this two-phase flow model and then invoke a mixed-finite-element method to perform a structure-preserving spatial discretization. Consequently, we obtain a finite-dimensional realization of a recently proposed novel Stokes-Dirac structure for this model. The properties of the resulting finite-dimensional realization are assessed and the conditions under which it is known to respect the properties of a finite-dimensional Dirac structure are discussed. Moreover, we derive the complete finite-dimensional interconnected port-Hamiltonian model by invoking the notion of power-preserving interconnection.
Citation
- Journal: 2020 59th IEEE Conference on Decision and Control (CDC)
- Year: 2020
- Volume:
- Issue:
- Pages: 5062–5067
- Publisher: IEEE
- DOI: 10.1109/cdc42340.2020.9304252
BibTeX
@inproceedings{Bansal_2020,
title={{Structure-preserving Spatial Discretization of a Two-Fluid Model}},
DOI={10.1109/cdc42340.2020.9304252},
booktitle={{2020 59th IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Bansal, H. and Weiland, S. and Iapichino, L. and Schilders, W.H.A. and van de Wouw, N.},
year={2020},
pages={5062--5067}
}
References
- Seslija, M., Scherpen, J. M. A. & van der Schaft, A. Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems. Automatica 50, 369–377 (2014) – 10.1016/j.automatica.2013.11.020
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics 361, 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Farle, O., Klis, D., Jochum, M., Floch, O. & Dyczij-Edlinger, R. A port-hamiltonian finite-element formulation for the maxwell equations. 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) 324–327 (2013) doi:10.1109/iceaa.2013.6632246 – 10.1109/iceaa.2013.6632246
- wilde, Port-Hamiltonian discretization of gas pipeline networks. masters thesis (2015)
- Bassi, L., Macchelli, A. & Melchiorri, C. An Algorithm to Discretize One-Dimensional Distributed Port Hamiltonian Systems. Lecture Notes in Control and Information Sciences 61–73 doi:10.1007/978-3-540-73890-9_4 – 10.1007/978-3-540-73890-9_4
- Serhani, A., Matignon, D. & Haine, G. A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. Lecture Notes in Computer Science 549–558 (2019) doi:10.1007/978-3-030-26980-7_57 – 10.1007/978-3-030-26980-7_57
- cardoso-ribeiro, A Partitioned Finite Element Method for power-preserving discretization of open systems of conservation laws. (2019)
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics 373, 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine 52, 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine 52, 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Gong, Y., Wang, Q. & Wang, Z. Structure-preserving Galerkin POD reduced-order modeling of Hamiltonian systems. Computer Methods in Applied Mechanics and Engineering 315, 780–798 (2017) – 10.1016/j.cma.2016.11.016
- kotyczka, Numerical Methods for Distributed Parameter Port-Hamiltonian Systems - Structure-Preserving Approaches for Simulation and Control. Habilitation thesis (2019)
- Macchelli, A., Le Gorrec, Y. & Ramírez, H. Boundary Energy-Shaping Control of an Ideal Compressible Isentropic Fluid in 1-D. IFAC-PapersOnLine 50, 5598–5603 (2017) – 10.1016/j.ifacol.2017.08.1105
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters 133, 104530 (2019) – 10.1016/j.sysconle.2019.104530
- bansal, Port-Hamiltonian Formulation of Two-phase Flow Models. Submitted to Systems and Control Letters (0)
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics 231, 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Morrison, P. J. Structure and structure-preserving algorithms for plasma physics. Physics of Plasmas 24, (2017) – 10.1063/1.4982054
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM J. Sci. Comput. 38, B837–B865 (2016) – 10.1137/15m1055085
- cardoso-ribeiro, Port-Hamiltonian modeling and control of a fluid-structure system. PhD thesis (2016)
- Pasumarthy, R. & van der Schaft, A. A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach. Proceedings of the 45th IEEE Conference on Decision and Control 3984–3989 (2006) doi:10.1109/cdc.2006.377022 – 10.1109/cdc.2006.377022
- kotyczka, Discretized models for networks of distributed parameter port-Hamiltonian systems. nDS’13 8th International Workshop on Multidimensional Systems (2013)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- pasumarthy, Port-Hamiltonian formulation of shallow water equations with coriolis force and topography. Proceedings of the 18th International Symposium on Mathematical Theory of Networks and Systems (2008)
- bansal, Port-Hamiltonian modelling of fluid dynamics models with variable cross-section. Submitted to 24th International Symposium on Mathematical Theory of Networks and Systems (2020)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677