Dirac Structures for a Class of Port-Hamiltonian Systems in Discrete Time
Authors
Alessio Moreschini, Salvatore Monaco, Dorothée Normand-Cyrot
Abstract
This article discusses the Dirac structure and the state-space representation of a class of port-Hamiltonian systems that evolve in discrete time. The characterization of the underlying Dirac structure depends on separating the stored energy associated with the system into two distinct components. Moreover, it is shown that power-preserving interconnection and negative output feedback maintain the port-Hamiltonian structure while increasing the dimension of the Dirac structure. Finally, the proposed approach is illustrated by means of an approximated gravity pendulum model.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2024
- Volume: 69
- Issue: 3
- Pages: 1999–2006
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2023.3313327
BibTeX
@article{Moreschini_2024,
title={{Dirac Structures for a Class of Port-Hamiltonian Systems in Discrete Time}},
volume={69},
ISSN={2334-3303},
DOI={10.1109/tac.2023.3313327},
number={3},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Moreschini, Alessio and Monaco, Salvatore and Normand-Cyrot, Dorothée},
year={2024},
pages={1999--2006}
}
References
- Kron, Tensor Analysis of Networks. (1939)
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. AE Int. J. Electron. Commun. (1995)
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Stramigioli, S., Secchi, C., van der Schaft, A. J. & Fantuzzi, C. Sampled data systems passivity and discrete port-Hamiltonian systems. IEEE Transactions on Robotics vol. 21 574–587 (2005) – 10.1109/tro.2004.842330
- Moreschini, A., Monaco, S. & Normand-Cyrot, D. Gradient and Hamiltonian dynamics under sampling. IFAC-PapersOnLine vol. 52 472–477 (2019) – 10.1016/j.ifacol.2019.12.006
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Stabilization of Discrete Port-Hamiltonian Dynamics via Interconnection and Damping Assignment. IEEE Control Systems Letters vol. 5 103–108 (2021) – 10.1109/lcsys.2020.3000705
- Kotyczka, P. & Thoma, T. Symplectic discrete-time energy-based control for nonlinear mechanical systems. Automatica vol. 133 109842 (2021) – 10.1016/j.automatica.2021.109842
- Macchelli, A. Trajectory Tracking for Discrete-Time Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 6 3146–3151 (2022) – 10.1109/lcsys.2022.3182845
- Talasila, V., Clemente-Gallardo, J. & van der Schaft, A. J. Discrete port-Hamiltonian systems. Systems & Control Letters vol. 55 478–486 (2006) – 10.1016/j.sysconle.2005.10.001
- Laila, D. S. & Astolfi, A. Construction of discrete-time models for port-controlled Hamiltonian systems with applications. Systems & Control Letters vol. 55 673–680 (2006) – 10.1016/j.sysconle.2005.09.012
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Aoues, S., Di Loreto, M., Eberard, D. & Marquis-Favre, W. Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability. Systems & Control Letters vol. 110 9–14 (2017) – 10.1016/j.sysconle.2017.10.003
- Monaco, S., Normand-Cyrot, D., Mattioni, M. & Moreschini, A. Nonlinear Hamiltonian Systems Under Sampling. IEEE Transactions on Automatic Control vol. 67 4598–4613 (2022) – 10.1109/tac.2022.3164985
- Mattioni, M., Moreschini, A., Monaco, S. & Normand-Cyrot, D. Discrete-time energy-balance passivity-based control. Automatica vol. 146 110662 (2022) – 10.1016/j.automatica.2022.110662
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Interconnection through u-average passivity in discrete time. 2019 IEEE 58th Conference on Decision and Control (CDC) 4234–4239 (2019) doi:10.1109/cdc40024.2019.9029357 – 10.1109/cdc40024.2019.9029357
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Discrete port-controlled Hamiltonian dynamics and average passivation. 2019 IEEE 58th Conference on Decision and Control (CDC) 1430–1435 (2019) doi:10.1109/cdc40024.2019.9029809 – 10.1109/cdc40024.2019.9029809
- Monaco, A unified representation for nonlinear discrete-time and sampled dynamics. J. Math. Syst., Estimation Control (1995)
- Gonzalez, O. Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science vol. 6 449–467 (1996) – 10.1007/bf02440162
- Monaco, S. & Normand-Cyrot, D. Nonlinear average passivity and stabilizing controllers in discrete time. Systems & Control Letters vol. 60 431–439 (2011) – 10.1016/j.sysconle.2011.03.010
- Albertini, F. & Sontag, E. D. Discrete-Time Transitivity and Accessibility: Analytic Systems. SIAM Journal on Control and Optimization vol. 31 1599–1622 (1993) – 10.1137/0331075
- Jakubczyk, B. & Sontag, E. D. Controllability of Nonlinear Discrete-Time Systems: A Lie-Algebraic Approach. SIAM Journal on Control and Optimization vol. 28 1–33 (1990) – 10.1137/0328001
- Monaco, S. & Normand-Cyrot, D. Discrete-time state representations, a new paradigm. Perspectives in Control 191–203 (1998) doi:10.1007/978-1-4471-1276-1_14 – 10.1007/978-1-4471-1276-1_14
- Jakubczyk, Automatique thorique. orbites de pseudo-groupes de diffomorphismes et commandabilit des systemes non linaires en temps discret. Comptes rendus des sances de lAcadmie des sciences (1984)
- McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 357 1021–1045 (1999) – 10.1098/rsta.1999.0363
- Hairer, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0