LQG control for flexible micro-grippers with additional integral action
Authors
Yongxin Wu, Hector Ramirez, Yann Le Gorrec
Abstract
This paper deals with the stabilizing control design for a class of micro-grippers for DNA manipulation using boundary controlled infinite-dimensional port-Hamiltonian systems. In practical applications, the controllers are implemented as finite-dimensional systems actuating at the boundaries of an infinite-dimensional system. The design of the finite-dimensional controllers is still a challenge, especially for hyperbolic PDEs. For this purpose, the LQG balancing reduction method is suitable for the reduced order control design since it considers the closed loop behavior in the reduction procedure. This paper presents the application of this recently proposed method combined with integral action in order to improve the robustness of the closed-loop system. It is shown by means of simulation that the addition of integral action effectively rejects constant perturbations while assuring global closed-loop stability.
Citation
- Journal: 2019 Chinese Control Conference (CCC)
- Year: 2019
- Volume:
- Issue:
- Pages: 1081–1086
- Publisher: IEEE
- DOI: 10.23919/chicc.2019.8865979
BibTeX
@inproceedings{Wu_2019,
title={{LQG control for flexible micro-grippers with additional integral action}},
DOI={10.23919/chicc.2019.8865979},
booktitle={{2019 Chinese Control Conference (CCC)}},
publisher={IEEE},
author={Wu, Yongxin and Ramirez, Hector and Gorrec, Yann Le},
year={2019},
pages={1081--1086}
}
References
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Ramirez, H., Le Gorrec, Y. & Zwart, H. Exponential stabilization of a class of flexible microgrippers using dynamic boundary port Hamiltonian control. 52nd IEEE Conference on Decision and Control 460–465 (2013) doi:10.1109/cdc.2013.6759924 – 10.1109/cdc.2013.6759924
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Structure preserving reduction of port hamiltonian system using a modified LQG method. Proceedings of the 33rd Chinese Control Conference 3528–3533 (2014) doi:10.1109/chicc.2014.6895525 – 10.1109/chicc.2014.6895525
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced order LQG control design for port Hamiltonian systems. Automatica vol. 95 86–92 (2018) – 10.1016/j.automatica.2018.05.003
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced order LQG control design for port Hamiltonian systems. Automatica vol. 95 86–92 (2018) – 10.1016/j.automatica.2018.05.003
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters vol. 61 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Dirksz, D. A. & Scherpen, J. M. A. Power-based adaptive and integral control of standard mechanical systems. 49th IEEE Conference on Decision and Control (CDC) 4612–4617 (2010) doi:10.1109/cdc.2010.5717079 – 10.1109/cdc.2010.5717079
- Munoz-Arias, M., Scherpen, J. M. A. & Dirksz, D. A. Position control via force feedback for a class of standard mechanical systems in the port-Hamiltonian framework. 52nd IEEE Conference on Decision and Control 1622–1627 (2013) doi:10.1109/cdc.2013.6760114 – 10.1109/cdc.2013.6760114
- brogliato, Dissipative Systems Analysis and Control Theory and Applications Communications and Control Engineering (2007)
- Florin, E.-L., Moy, V. T. & Gaub, H. E. Adhesion Forces Between Individual Ligand-Receptor Pairs. Science vol. 264 415–417 (1994) – 10.1126/science.8153628
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Simmons, R. M., Finer, J. T., Chu, S. & Spudich, J. A. Quantitative measurements of force and displacement using an optical trap. Biophysical Journal vol. 70 1813–1822 (1996) – 10.1016/s0006-3495(96)79746-1
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Möckel, J., Reis, T. & Stykel, T. Linear-quadratic Gaussian balancing for model reduction of differential-algebraic systems. International Journal of Control vol. 84 1627–1643 (2011) – 10.1080/00207179.2011.622791
- Ishijima, A., Doi, T., Sakurada, K. & Yanagida, T. Sub-piconewton force fluctuations of actomyosin in vitro. Nature vol. 352 301–306 (1991) – 10.1038/352301a0
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- Gosse, C. & Croquette, V. Magnetic Tweezers: Micromanipulation and Force Measurement at the Molecular Level. Biophysical Journal vol. 82 3314–3329 (2002) – 10.1016/s0006-3495(02)75672-5
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Amblard, F., Yurke, B., Pargellis, A. & Leibler, S. A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments vol. 67 818–827 (1996) – 10.1063/1.1146816
- Boudaoud, M., Haddab, Y. & Le Gorrec, Y. Modeling and Optimal Force Control of a Nonlinear Electrostatic Microgripper. IEEE/ASME Transactions on Mechatronics vol. 18 1130–1139 (2013) – 10.1109/tmech.2012.2197216
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Ramirez, H. & Le Gorrec, Y. Boundary port Hamiltonian control of a class of nanotweezers. 2013 European Control Conference (ECC) 566–571 (2013) doi:10.23919/ecc.2013.6669834 – 10.23919/ecc.2013.6669834
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- jacob, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces vol 223 of Operator Theory Advances and Applications (2012)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017