Position control via force feedback for a class of standard mechanical systems in the port-Hamiltonian framework
Authors
Mauricio Munoz-Arias, Jacquelien M. A. Scherpen, Daniel A. Dirksz
Abstract
In this paper position control strategies via force feedback are presented for standard mechanical systems in the port-Hamiltonian framework. The presented control strategies requires a set of coordinate transformations, since force feedback in the port-Hamiltonian framework is not straightforward. With the coordinate transformations force feedback can be realized while preserving the port-Hamiltonian structure. The port-Hamiltonian formalism offers a modeling framework with a clear physical structure and other properties that can often be exploited for control design purposes, which is why we believe it is important to preserve the structure. The proposed control strategies offers an alternative solution to position control with more tuning freedom and exploits knowledge of the system dynamics.
Citation
- Journal: 52nd IEEE Conference on Decision and Control
- Year: 2013
- Volume:
- Issue:
- Pages: 1622–1627
- Publisher: IEEE
- DOI: 10.1109/cdc.2013.6760114
BibTeX
@inproceedings{Munoz_Arias_2013,
title={{Position control via force feedback for a class of standard mechanical systems in the port-Hamiltonian framework}},
DOI={10.1109/cdc.2013.6760114},
booktitle={{52nd IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Munoz-Arias, Mauricio and Scherpen, Jacquelien M. A. and Dirksz, Daniel A.},
year={2013},
pages={1622--1627}
}
References
- Viola, G., Ortega, R., Banavar, R., Acosta, J. A. & Astolfi, A. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes. IEEE Trans. Automat. Contr. 52, 1093–1099 (2007) – 10.1109/tac.2007.899064
- Springer Handbook of Robotics. (2008) doi:10.1007/978-3-540-30301-5 – 10.1007/978-3-540-30301-5
- van der schaft, L2-gain and passivity techniques in nonlinear control. Lecture Notes in Control and Information Sciences (1999)
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. IEEE Conference on Decision and Control and European Control Conference 3222–3227 (2011) doi:10.1109/cdc.2011.6160543 – 10.1109/cdc.2011.6160543
- rijs, Philips Experimental Robot Arm User Instructor Manual (2010)
- murray, A Mathematical Introduction to Robotic Manipulation (1994)
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica 45, 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Dirksz, D. A. & Scherpen, J. M. A. Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica 48, 1045–1056 (2012) – 10.1016/j.automatica.2012.03.003
- Theory of Robot Control. Communications and Control Engineering (Springer London, 1996). doi:10.1007/978-1-4471-1501-4 – 10.1007/978-1-4471-1501-4
- munoz-arias, A class of standard mechanical systems with force feedback in the port- hamiltonian framework. Proc IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2012)
- gorinevsky, Force Control of Robotics Systems (1997)
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control 10, 451–468 (2004) – 10.3166/ejc.10.451-468
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- maschke, Port-controlled hamiltonian systems: Modeling origins and system-theoretic properties. Proc IFAC Symp Nonlinear Control Systems (1992)
- khalil, Nonlinear Systems (1996)