Exponential stabilization of a class of flexible microgrippers using dynamic boundary port Hamiltonian control
Authors
Hector Ramirez, Yann Le Gorrec, Hans Zwart
Abstract
This paper deals with the control of a class of simplified models for flexible micro-grippers for DNA manipulation. The overall system is first modelled as a boundary controlled port Hamiltonian system made up as the interconnection of an infinite dimensional system (modelled as an undamped Timoshenko beam) representing the flexible arm of the gripper with two finite dimensional systems representing the DNA bundle and the suspension/actuator mechanism. The base of the arm is clamped on the suspension mechanism leading to under actuated system. The controller considered under strict dissipative port Hamiltonian format uses the velocity of the base of the tweezers arm as input and generates a force as output. The exponential stability of the closed loop system is derived by checkininfinite and finite dimensional system.g simple conditions on both the infinite and finite dimensional system.
Citation
- Journal: 52nd IEEE Conference on Decision and Control
- Year: 2013
- Volume:
- Issue:
- Pages: 460–465
- Publisher: IEEE
- DOI: 10.1109/cdc.2013.6759924
BibTeX
@inproceedings{Ramirez_2013,
title={{Exponential stabilization of a class of flexible microgrippers using dynamic boundary port Hamiltonian control}},
DOI={10.1109/cdc.2013.6759924},
booktitle={{52nd IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Ramirez, Hector and Le Gorrec, Yann and Zwart, Hans},
year={2013},
pages={460--465}
}
References
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Ramirez, H. & Le Gorrec, Y. Boundary port Hamiltonian control of a class of nanotweezers. 2013 European Control Conference (ECC) 566–571 (2013) doi:10.23919/ecc.2013.6669834 – 10.23919/ecc.2013.6669834
- boudaoud, Modeling and optimal force control of a nonlinear electrostatic micro gripper. Mechatronics IEEE LASME Transactions on (2012)
- macchelli, Boundary energy shaping of linear distributed port Hamiltonian systems. Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non-linear Control (2012)
- Ramirez, H. & Le Gorrec, Y. Exponential stability of a class of PDE’s with dynamic boundary control. 2013 American Control Conference 3290–3295 (2013) doi:10.1109/acc.2013.6580339 – 10.1109/acc.2013.6580339
- ramirez, Exponential stability of boundary controlled port Hamiltonian systems with dynamic feedback. Proceedings of the 1st IFAC Workshop on Control of Systems Governed by Partial Differential Equations (CPDE2013) (2013)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Simmons, R. M., Finer, J. T., Chu, S. & Spudich, J. A. Quantitative measurements of force and displacement using an optical trap. Biophysical Journal 70, 1813–1822 (1996) – 10.1016/s0006-3495(96)79746-1
- Brogliato, B., Maschke, B., Lozano, R. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2007). doi:10.1007/978-1-84628-517-2 – 10.1007/978-1-84628-517-2
- Gosse, C. & Croquette, V. Magnetic Tweezers: Micromanipulation and Force Measurement at the Molecular Level. Biophysical Journal 82, 3314–3329 (2002) – 10.1016/s0006-3495(02)75672-5
- Amblard, F., Yurke, B., Pargellis, A. & Leibler, S. A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments 67, 818–827 (1996) – 10.1063/1.1146816
- villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems (2007)
- Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003) – 10.1038/nature01405
- Cluzel, P. et al. DNA: An Extensible Molecule. Science 271, 792–794 (1996) – 10.1126/science.271.5250.792
- Ishijima, A., Doi, T., Sakurada, K. & Yanagida, T. Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352, 301–306 (1991) – 10.1038/352301a0
- Florin, E.-L., Moy, V. T. & Gaub, H. E. Adhesion Forces Between Individual Ligand-Receptor Pairs. Science 264, 415–417 (1994) – 10.1126/science.8153628
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3