Power-based adaptive and integral control of standard mechanical systems
Authors
Abstract
Recently a power-based modeling framework was introduced for mechanical systems, based on the Brayton-Moser framework. In this paper it is shown how this power-based framework is used for control of standard mechanical systems. For systems which are affected by parameter uncertainty or other unknown disturbances adaptive control and integral control are also described in this framework. The power-based control approach is also compared with the energy-shaping control of port-Hamiltonian systems. The most interesting difference is the possibility of having adaptive and integrator dynamics depending on position errors, while preserving the physical structure.
Citation
- Journal: 49th IEEE Conference on Decision and Control (CDC)
- Year: 2010
- Volume:
- Issue:
- Pages: 4612–4617
- Publisher: IEEE
- DOI: 10.1109/cdc.2010.5717079
BibTeX
@inproceedings{Dirksz_2010,
title={{Power-based adaptive and integral control of standard mechanical systems}},
DOI={10.1109/cdc.2010.5717079},
booktitle={{49th IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Dirksz, D.A. and Scherpen, J.M.A.},
year={2010},
pages={4612--4617}
}
References
- khalil, Nonlinear Systems (1996)
- maschke, Port-controlled Hamiltonian systems: modeling origins and system-theoretic properties. IFAC Symposium on Nonlinear Control Systems (1992)
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Transactions on Automatic Control vol. 48 1762–1767 (2003) – 10.1109/tac.2003.817918
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Fujimoto, K. & Sugie, T. Time-varying stabilization of nonholonomic Hamiltonian systems via canonical transformations. Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334) 3269–3273 vol.5 (2000) doi:10.1109/acc.2000.879169 – 10.1109/acc.2000.879169
- Favache, A. & Dochain, D. Analysis and control of the exothermic continuous stirred tank reactor: the power-shaping approach. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 1866–1871 (2009) doi:10.1109/cdc.2009.5400318 – 10.1109/cdc.2009.5400318
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Jeltsema, D. & Scherpen, J. M. A. A power-based description of standard mechanical systems. Systems & Control Letters vol. 56 349–356 (2007) – 10.1016/j.sysconle.2006.10.015
- García-Canseco, E., Jeltsema, D., Ortega, R. & Scherpen, J. M. A. Power-based control of physical systems. Automatica vol. 46 127–132 (2010) – 10.1016/j.automatica.2009.10.012
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Multidomain modeling of nonlinear networks and systems. IEEE Control Systems vol. 29 28–59 (2009) – 10.1109/mcs.2009.932927